-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathapi.py
180 lines (153 loc) · 6.33 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from tqdm import tqdm
import torch
import torchvision.transforms.functional as tvf
from utils import visualization, dataloader, utils
class Detector():
'''
Wrapper of image object detectors.
Args:
model_name: str, currently only support 'rapid'
weights_path: str, path to the pre-trained network weights
model: torch.nn.Module, used only during training
conf_thres: float, confidence threshold
input_size: int, input resolution
'''
def __init__(self, model_name='', weights_path=None, model=None, **kwargs):
# post-processing settings
self.conf_thres = kwargs.get('conf_thres', None)
self.input_size = kwargs.get('input_size', None)
if model:
self.model = model
return
if model_name == 'rapid':
from models.rapid import RAPiD
model = RAPiD(backbone='dark53')
elif model_name == 'rapid_export': # testing-only version
from models.rapid_export import RAPiD
model = RAPiD()
else:
raise NotImplementedError()
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f'Successfully initialized model {model_name}.',
'Total number of trainable parameters:', total_params)
model.load_state_dict(torch.load(weights_path, map_location='cpu')['model'])
print(f'Successfully loaded weights: {weights_path}')
model.eval()
if kwargs.get('use_cuda', True):
print("Using CUDA...")
assert torch.cuda.is_available()
self.model = model.cuda()
else:
print("Using CPU instead of CUDA...")
self.model = model
def detect_one(self, **kwargs):
'''
Inference on a single image.
Args:
img_path: str or pil_img: PIL.Image
input_size: int, input resolution
conf_thres: float, confidence threshold
return_img: bool, if True, return am image with bbox visualizattion. \
default: False
visualize: bool, if True, plt.show the image with bbox visualization. \
default: False
'''
assert 'img_path' in kwargs or 'pil_img' in kwargs
img = kwargs.pop('pil_img', None) or Image.open(kwargs['img_path'])
detections = self._predict_pil(img, **kwargs)
if kwargs.get('return_img', False):
np_img = np.array(img)
visualization.draw_dt_on_np(np_img, detections, **kwargs)
return np_img
if kwargs.get('visualize', False):
np_img = np.array(img)
visualization.draw_dt_on_np(np_img, detections, **kwargs)
plt.figure(figsize=(10,10))
plt.imshow(np_img)
plt.show()
return detections
def detect_imgSeq(self, img_dir, **kwargs):
'''
Run on a sequence of images in a folder.
Args:
img_dir: str
input_size: int, input resolution
conf_thres: float, confidence threshold
'''
gt_path = kwargs['gt_path'] if 'gt_path' in kwargs else None
ims = dataloader.Images4Detector(img_dir, gt_path) # TODO
dts = self._detect_iter(iter(ims), **kwargs)
return dts
def _detect_iter(self, iterator, **kwargs):
detection_json = []
for _ in tqdm(range(len(iterator))):
pil_frame, anns, img_id = next(iterator)
detections = self._predict_pil(pil_img=pil_frame, **kwargs)
for dt in detections:
x, y, w, h, a, conf = [float(t) for t in dt]
bbox = [x,y,w,h,a]
dt_dict = {'image_id': img_id, 'bbox': bbox, 'score': conf,
'segmentation': []}
detection_json.append(dt_dict)
return detection_json
def _predict_pil(self, pil_img, **kwargs):
'''
Args:
pil_img: PIL.Image.Image
input_size: int, input resolution
conf_thres: float, confidence threshold
'''
input_size = kwargs.get('input_size', self.input_size)
conf_thres = kwargs.get('conf_thres', self.conf_thres)
assert isinstance(pil_img, Image.Image), 'input must be a PIL.Image'
assert input_size is not None, 'Please specify the input resolution'
assert conf_thres is not None, 'Please specify the confidence threshold'
# pad to square
input_img, _, pad_info = utils.rect_to_square(pil_img, None, input_size, 0)
input_ori = tvf.to_tensor(input_img)
input_ = input_ori.unsqueeze(0)
assert input_.dim() == 4
device = next(self.model.parameters()).device
input_ = input_.to(device=device)
with torch.no_grad():
dts = self.model(input_).cpu()
dts = dts.squeeze()
# post-processing
dts = dts[dts[:,5] >= conf_thres]
if len(dts) > 1000:
_, idx = torch.topk(dts[:,5], k=1000)
dts = dts[idx, :]
if kwargs.get('debug', False):
np_img = np.array(input_img)
visualization.draw_dt_on_np(np_img, dts)
plt.imshow(np_img)
plt.show()
dts = utils.nms(dts, is_degree=True, nms_thres=0.45, img_size=input_size)
dts = utils.detection2original(dts, pad_info.squeeze())
if kwargs.get('debug', False):
np_img = np.array(pil_img)
visualization.draw_dt_on_np(np_img, dts)
plt.imshow(np_img)
plt.show()
return dts
def detect_once(model, pil_img, conf_thres, nms_thres=0.45, input_size=608):
'''
Run the model on the pil_img and return the detections.
'''
device = next(model.parameters()).device
ori_w, ori_h = pil_img.width, pil_img.height
input_img, _, pad_info = utils.rect_to_square(pil_img, None, input_size, 0)
input_img = tvf.to_tensor(input_img).to(device=device)
with torch.no_grad():
dts = model(input_img[None]).cpu().squeeze()
dts = dts[dts[:,5] >= conf_thres].cpu()
dts = utils.nms(dts, is_degree=True, nms_thres=0.45)
dts = utils.detection2original(dts, pad_info.squeeze())
# np_img = np.array(pil_img)
# api_utils.draw_dt_on_np(np_img, detections)
# plt.imshow(np_img)
# plt.show()
return dts