-
Notifications
You must be signed in to change notification settings - Fork 0
/
exercise-3.py
135 lines (99 loc) · 2.61 KB
/
exercise-3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# numpy.transponse()
from tabulate import tabulate
def norm1(matrix):
rows = []
for row in matrix:
acc = 0
for col in row:
acc += abs(col)
rows.append(acc)
return max(rows)
def norm2(matrix):
cols = []
for i in range(len(matrix)):
acc = 0
for j in range(len(matrix[i])):
acc += abs(matrix[j][i])
cols.append(acc)
return max(cols)
def f(x, y, z, k):
return [
0 * x + 0.3 * y + 0.14 * z + 0.2 * k - 1,
0.11 * x + 0 * y - 0.41 * z - 0.1 * k - 1,
0.1 * x + 0.1 * y + 0 * z + 0.13 * k + 2,
0.13 * x - 0.4 * y - 0.2 * z + 0 * k + 0.1,
]
def solve_simple_iteration(a, b):
table = []
min_norm = min(
norm1(a),
norm1([b])
)
assert min_norm < 1
[x, y, z, k] = b
i = -1
while True:
i += 1
[n_x, n_y, n_z, n_k] = f(x, y, z, k)
delta = max(
abs(x - n_x),
abs(y - n_y),
abs(z - n_z),
abs(k - n_k),
)
table.append([
i,
round(x, 3),
round(y, 3),
round(z, 3),
round(k, 3),
round(delta, 3),
])
if round(delta, 3) <= 0.001:
break
x, y, z, k = n_x, n_y, n_z, n_k
return table
def solve_seidel(a, b):
table = []
[x, y, z, k] = b
i = -1
while True:
i += 1
x_r = f(x, y, z, k)
p_x, x = x, x_r[0]
y_r = f(x, y, z, k)
p_y, y = y, y_r[1]
z_r = f(x, y, z, k)
p_z, z = z, z_r[2]
k_r = f(x, y, z, k)
p_k, k = k, k_r[3]
delta = max([
abs(p_x - x),
abs(p_y - y),
abs(p_z - z),
abs(p_k - k),
])
table.append([
i,
round(x, 3),
round(y, 3),
round(z, 3),
round(k, 3),
round(delta, 3),
])
if round(delta, 3) <= 0.001:
break
return table
# wolfram {{x-0.3y - 0.14z - 0.2k = - 1}, {-0.11x + y + 0.41z + 0.1k = -1}, {-0.1x-0.1y+z-0.13k=2}, {-0.13x+0.4y+0.2z+k=0.1}}
if __name__ == '__main__':
a = [
[0, 0.3, 0.14, 0.2],
[0.11, 0, -0.41, -0.1],
[0.1, 0.1, 0, 0.13],
[0.13, -0.4, -0.2, 0],
]
b = [-1, -1, 2, 0.1]
si_r = solve_simple_iteration(a, b)
print("Simple iteration", '\n', tabulate(si_r, headers=['i', 'x', 'y', 'z', 'k', 'delta']), '\n')
seidel_r = solve_seidel(a, b)
print('Seidel', '\n', tabulate(seidel_r, headers=['i', 'x', 'y', 'z', 'k', 'delta']), '\n')