-
Notifications
You must be signed in to change notification settings - Fork 1
/
tremelo.c
196 lines (172 loc) · 4.73 KB
/
tremelo.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
/*
Copyright 2017 Daniel Sheeler <[email protected]>
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THIS SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <math.h>
#include <stdlib.h>
#include "lv2/lv2plug.in/ns/lv2core/lv2.h"
#ifndef M_PI
# define M_PI 3.14159265
#endif
/** Define a macro for converting a gain in dB to a coefficient. */
#define DB_CO(g) ((g) > -120.0f ? powf(10.0f, (g) * 0.05f) : 0.0f)
#define TREMELO_URI "http://dsheeler.org/plugins/tremelo"
typedef enum {
TREMELO_GAIN = 0,
TREMELO_FREQ = 1,
TREMELO_MODE = 2,
TREMELO_INPUT = 3,
TREMELO_OUTPUT = 4
} PortIndex;
static const uint32_t wave_len_s = 2048;
typedef struct {
// Port buffers
const float* gain;
const float* freq;
const float* mode;
const float* input;
float* output;
float gain_db;
float gain_coeff_target;
float gain_coeff;
float freq_target;
float freq_last;
float freq_actual;
double sr;
float phase;
float phase_inc;
uint32_t wave_offset;
float* wave_sine;
float* wave_square;
uint32_t wave_len;
} Tremelo;
static LV2_Handle
instantiate(const LV2_Descriptor* descriptor,
double rate,
const char* bundle_path,
const LV2_Feature* const* features) {
Tremelo* trem = (Tremelo*)calloc(1, sizeof(Tremelo));
trem->sr = rate;
trem->wave_len = wave_len_s;
trem->wave_sine = (float*)malloc(trem->wave_len * sizeof(float));
trem->wave_square = (float*)malloc(trem->wave_len * sizeof(float));
for (uint32_t i = 0; i < trem->wave_len; i++) {
trem->wave_sine[i] = sinf(i * 2 * M_PI / trem->wave_len);
trem->wave_square[i] = (float)trem->wave_sine[i] > 0 ? 1.0 : -1.0;
}
return (LV2_Handle)trem;
}
static void
connect_port(LV2_Handle instance,
uint32_t port,
void* data)
{
Tremelo* trem = (Tremelo*)instance;
switch ((PortIndex)port) {
case TREMELO_GAIN:
trem->gain = data;
break;
case TREMELO_FREQ:
trem->freq = data;
break;
case TREMELO_MODE:
trem->mode = data;
break;
case TREMELO_INPUT:
trem->input = data;
break;
case TREMELO_OUTPUT:
trem->output = data;
break;
}
}
static void
activate(LV2_Handle instance)
{
Tremelo* trem = (Tremelo*) instance;
trem->phase = 0;
trem->gain_db = *trem->gain;
trem->gain_coeff = DB_CO(*trem->gain);
trem->gain_coeff_target = DB_CO(*trem->gain);
trem->freq_actual = *trem->freq;
trem->freq_target = *trem->freq;
trem->freq_last = *trem->freq;
}
static void
run(LV2_Handle instance, uint32_t n_samples)
{
Tremelo* trem = (Tremelo*)instance;
int mode = rint(*trem->mode);
const float gain = *trem->gain;
const float freq = *trem->freq;
const float *input = trem->input;
float *const output = trem->output;
uint32_t idx;
if (trem->gain_db != gain) {
trem->gain_db = gain;
float db = trem->gain_db;
if (db > 0) db = 0;
if (db < -120) db = -120;
trem->gain_coeff_target = DB_CO(db);
}
trem->gain_coeff += 0.1 * (trem->gain_coeff_target - trem->gain_coeff) + 1e-12;
if (trem->freq_last != freq) {
trem->freq_target = freq;
}
trem->freq_actual += 0.1 * (trem->freq_target - trem->freq_actual) + 1e-12;
trem->phase_inc = trem->freq_actual / trem->sr;
const float coef_c = trem->gain_coeff;
float *wave = mode <= 0 ? trem->wave_sine : trem->wave_square;
for (uint32_t pos = 0; pos < n_samples; pos++) {
idx = (uint32_t) (trem->phase * trem->wave_len);
output[pos] = input[pos] * (0.5 * (1 + coef_c)
+ 0.5 * (1 - coef_c) * wave[idx]);
trem->phase = fmodf(trem->phase + trem->phase_inc, 1.0);
}
trem->freq_last = freq;
}
static void
deactivate(LV2_Handle instance)
{
}
static void
cleanup(LV2_Handle instance)
{
Tremelo *trem = (Tremelo*)instance;
free(trem->wave_sine);
free(trem->wave_square);
free(trem);
}
static const void*
extension_data(const char* uri)
{
return NULL;
}
static const LV2_Descriptor descriptor = {
TREMELO_URI,
instantiate,
connect_port,
activate,
run,
deactivate,
cleanup,
extension_data
};
LV2_SYMBOL_EXPORT
const LV2_Descriptor*
lv2_descriptor(uint32_t index)
{
switch (index) {
case 0: return &descriptor;
default: return NULL;
}
}