-
Notifications
You must be signed in to change notification settings - Fork 0
/
advsurv.html
79 lines (75 loc) · 3.83 KB
/
advsurv.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Mozilla/4.7 [en] (X11; I; SunOS 5.8 sun4u) [Netscape]">
</head>
<body text="#000000" bgcolor="#FFFF99" link="#0000EE" vlink="#551A8B" alink="#FF0000" background="formula.gif">
<center>
<p><b><font size=+1>ADVANCED SURVIVAL ANALYSIS (140.794)</font></b></p>
<p>
</p>
</center>
<p><b><i><font size=+1>Course Description</font></i></b>
<blockquote><font size=+1>This course will discuss the counting process
approach to the analysis of censored failure time data. From this
prospective, we will revisit many of the standard statistical methods in
survival analysis, including the Nelson-Aalen estimator of the cumulative
hazard function, the Kaplan-Meier estimator of the survivor function, the
weighted logrank statistics, the Cox proportional hazards regression model,
and the accelerated failure time model. All of the estimators and
test statistics will be shown to be equal to or approximated by stochastic
integrals with respect to martingales. This structure will then be exploited
to establish their asymptotic properties. Data from a clinical trial
for the treatment of liver disease will be used as a background theme throughout
the entire course.</font></blockquote>
<b><i><font size=+1>Intended Audience</font></i></b>
<blockquote><font size=+1>The course is designed for Biostatistics Ph.D.
students in their 2nd year or beyond. Exceptions made with permission
of the instructor.</font></blockquote>
<b><i><font size=+1>Prerequisites</font></i></b>
<blockquote><font size=+1>Survival Analysis (140.641), Measure Theoretic
Probability, Advanced StatisticalTheory I-II (140.771-772), Computer Programming
Experience (e.g., C, FORTRAN,S,R, or MATLAB).</font></blockquote>
<b><i><font size=+1>Teaching Style</font></i></b>
<blockquote><font size=+1>Course notes will be handed out prior to each
lecture. A combination of overheads and boardwork will be used in
the presentation of the materials. A 5-10 minute break will be given
about halfway through the lecture period.</font></blockquote>
<b><i><font size=+1>Method of Student Evaluation</font></i></b>
<blockquote><font size=+1>The grade will be based on at most five problem
sets, which will include theoretical exercises and computer programming.
They should be completed within 10 days. On all assignments except
the last, students may give advice to one another, but work should be carried
out and written up independently. No collaboration will be allowed
on the final assignment. The assignments will be weighted equally,
except for the last which will carry twice the weight of the others.</font></blockquote>
<b><i><font size=+1>Recommended Textbooks</font></i></b>
<ul>
<li>
<u><font size=+1>Statistical Models Based on Counting Processes, by
P.K. Andersen, O. Borgan, R.D. Gill, and N. Kieding, Springer-Verlag.</font></u></li>
<li>
<u><font size=+1>Counting Processes and Survival Analysis, by T.R. Fleming
and D.P. Harrington, Wiley</font></u></li>
</ul>
<strong><font size=+1><em>Course Content</em> (<a href="advsurv/index.html">Click
Here to Download Notes)</a></font></strong>
<blockquote><font size=+1>Chapter 1: Comprehensive
Introduction</font>
<br>
<font size=+1>Chapter 2: Theory of Counting Processes
and Asymptotics</font>
<br>
<font size=+1>Chapter 3: One Sample Problem</font>
<br>
<font size=+1>Chapter 4: Two Sample Problem</font>
<br>
<font size=+1>Chapter 5: Modeling Censored Survival
Data</font>
<br>
<font size=+1>Chapter 6: References for More Advanced
Methods</font></blockquote>
<blockquote> </blockquote>
</body>
</html>