-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy path03_train_gnn.py
183 lines (157 loc) · 6.99 KB
/
03_train_gnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import sys
import argparse
import pathlib
import numpy as np
def pretrain(policy, pretrain_loader):
policy.pre_train_init()
i = 0
while True:
for batch in pretrain_loader:
batch.to(device)
if not policy.pre_train(batch.constraint_features, batch.edge_index, batch.edge_attr, batch.variable_features):
break
if policy.pre_train_next() is None:
break
i += 1
return i
def process(policy, data_loader, top_k=[1, 3, 5, 10], optimizer=None):
mean_loss = 0
mean_kacc = np.zeros(len(top_k))
mean_entropy = 0
n_samples_processed = 0
with torch.set_grad_enabled(optimizer is not None):
for batch in data_loader:
batch = batch.to(device)
logits = policy(batch.constraint_features, batch.edge_index, batch.edge_attr, batch.variable_features)
logits = pad_tensor(logits[batch.candidates], batch.nb_candidates)
cross_entropy_loss = F.cross_entropy(logits, batch.candidate_choices, reduction='mean')
entropy = (-F.softmax(logits, dim=-1)*F.log_softmax(logits, dim=-1)).sum(-1).mean()
loss = cross_entropy_loss - entropy_bonus*entropy
if optimizer is not None:
optimizer.zero_grad()
loss.backward()
optimizer.step()
true_scores = pad_tensor(batch.candidate_scores, batch.nb_candidates)
true_bestscore = true_scores.max(dim=-1, keepdims=True).values
kacc = []
for k in top_k:
if logits.size()[-1] < k:
kacc.append(1.0)
continue
pred_top_k = logits.topk(k).indices
pred_top_k_true_scores = true_scores.gather(-1, pred_top_k)
accuracy = (pred_top_k_true_scores == true_bestscore).any(dim=-1).float().mean().item()
kacc.append(accuracy)
kacc = np.asarray(kacc)
mean_loss += cross_entropy_loss.item() * batch.num_graphs
mean_entropy += entropy.item() * batch.num_graphs
mean_kacc += kacc * batch.num_graphs
n_samples_processed += batch.num_graphs
mean_loss /= n_samples_processed
mean_kacc /= n_samples_processed
mean_entropy /= n_samples_processed
return mean_loss, mean_kacc, mean_entropy
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'problem',
help='MILP instance type to process.',
choices=['setcover', 'cauctions', 'facilities', 'indset', 'mknapsack'],
)
parser.add_argument(
'-s', '--seed',
help='Random generator seed.',
type=int,
default=0,
)
parser.add_argument(
'-g', '--gpu',
help='CUDA GPU id (-1 for CPU).',
type=int,
default=0,
)
args = parser.parse_args()
### HYPER PARAMETERS ###
max_epochs = 1000
batch_size = 32
pretrain_batch_size = 128
valid_batch_size = 128
lr = 1e-3
entropy_bonus = 0.0
top_k = [1, 3, 5, 10]
problem_folders = {
'setcover': 'setcover/500r_1000c_0.05d',
'cauctions': 'cauctions/100_500',
'facilities': 'facilities/100_100_5',
'indset': 'indset/500_4',
'mknapsack': 'mknapsack/100_6',
}
problem_folder = problem_folders[args.problem]
running_dir = f"model/{args.problem}/{args.seed}"
os.makedirs(running_dir, exist_ok=True)
### PYTORCH SETUP ###
if args.gpu == -1:
os.environ['CUDA_VISIBLE_DEVICES'] = ''
device = "cpu"
else:
os.environ['CUDA_VISIBLE_DEVICES'] = f'{args.gpu}'
device = f"cuda:0"
import torch
import torch.nn.functional as F
import torch_geometric
from utilities import log, pad_tensor, GraphDataset, Scheduler
sys.path.insert(0, os.path.abspath(f'model'))
from model import GNNPolicy
rng = np.random.RandomState(args.seed)
torch.manual_seed(args.seed)
### LOG ###
logfile = os.path.join(running_dir, 'train_log.txt')
if os.path.exists(logfile):
os.remove(logfile)
log(f"max_epochs: {max_epochs}", logfile)
log(f"batch_size: {batch_size}", logfile)
log(f"pretrain_batch_size: {pretrain_batch_size}", logfile)
log(f"valid_batch_size : {valid_batch_size }", logfile)
log(f"lr: {lr}", logfile)
log(f"entropy bonus: {entropy_bonus}", logfile)
log(f"top_k: {top_k}", logfile)
log(f"problem: {args.problem}", logfile)
log(f"gpu: {args.gpu}", logfile)
log(f"seed {args.seed}", logfile)
policy = GNNPolicy().to(device)
optimizer = torch.optim.Adam(policy.parameters(), lr=1e-3)
scheduler = Scheduler(optimizer, mode='min', patience=10, factor=0.2, verbose=True)
train_files = [str(file) for file in (pathlib.Path(f'data/samples')/problem_folder/'train').glob('sample_*.pkl')]
pretrain_files = [f for i, f in enumerate(train_files) if i % 10 == 0]
valid_files = [str(file) for file in (pathlib.Path(f'data/samples')/problem_folder/'valid').glob('sample_*.pkl')]
pretrain_data = GraphDataset(pretrain_files)
pretrain_loader = torch_geometric.loader.DataLoader(pretrain_data, pretrain_batch_size, shuffle=False)
valid_data = GraphDataset(valid_files)
valid_loader = torch_geometric.loader.DataLoader(valid_data, valid_batch_size, shuffle=False)
for epoch in range(max_epochs + 1):
log(f"EPOCH {epoch}...", logfile)
if epoch == 0:
n = pretrain(policy, pretrain_loader)
log(f"PRETRAINED {n} LAYERS", logfile)
else:
epoch_train_files = rng.choice(train_files, int(np.floor(10000/batch_size))*batch_size, replace=True)
train_data = GraphDataset(epoch_train_files)
train_loader = torch_geometric.data.DataLoader(train_data, batch_size, shuffle=True)
train_loss, train_kacc, entropy = process(policy, train_loader, top_k, optimizer)
log(f"TRAIN LOSS: {train_loss:0.3f} " + "".join([f" acc@{k}: {acc:0.3f}" for k, acc in zip(top_k, train_kacc)]), logfile)
# TEST
valid_loss, valid_kacc, entropy = process(policy, valid_loader, top_k, None)
log(f"VALID LOSS: {valid_loss:0.3f} " + "".join([f" acc@{k}: {acc:0.3f}" for k, acc in zip(top_k, valid_kacc)]), logfile)
scheduler.step(valid_loss)
if scheduler.num_bad_epochs == 0:
torch.save(policy.state_dict(), pathlib.Path(running_dir)/'train_params.pkl')
log(f" best model so far", logfile)
elif scheduler.num_bad_epochs == 10:
log(f" 10 epochs without improvement, decreasing learning rate", logfile)
elif scheduler.num_bad_epochs == 20:
log(f" 20 epochs without improvement, early stopping", logfile)
break
policy.load_state_dict(torch.load(pathlib.Path(running_dir)/'train_params.pkl'))
valid_loss, valid_kacc, entropy = process(policy, valid_loader, top_k, None)
log(f"BEST VALID LOSS: {valid_loss:0.3f} " + "".join([f" acc@{k}: {acc:0.3f}" for k, acc in zip(top_k, valid_kacc)]), logfile)