forked from k-l-lambda/stylegan-web
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest-projector.py
64 lines (43 loc) · 1.57 KB
/
test-projector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""Test for StyleGAN2 projector."""
import pickle
import numpy as np
import PIL.Image
import dnnlib.tflib as tflib
import time
from projector import Projector
from training import misc
def main():
t0 = time.time()
print('t0:', t0)
# Initialize TensorFlow.
tflib.init_tf() # 0.82s
print('t1:', time.time() - t0)
# Load pre-trained network.
with open('./models/stylegan2-ffhq-config-f.pkl', 'rb') as f:
print('t2:', time.time() - t0)
_G, _D, Gs = pickle.load(f) # 13.09s
print('t3:', time.time() - t0)
with open('./models/vgg16_zhang_perceptual.pkl', 'rb') as f:
lpips = pickle.load(f)
print('t4:', time.time() - t0)
proj = Projector()
proj.set_network(Gs, lpips)
image = PIL.Image.open('./images/example.png')
#image = image.resize((Di.input_shape[2], Di.input_shape[3]), PIL.Image.ANTIALIAS)
image_array = np.array(image).swapaxes(0, 2).swapaxes(1, 2)
image_array = misc.adjust_dynamic_range(image_array, [0, 255], [-1, 1])
print('t5:', time.time() - t0)
proj.start([image_array])
for step in proj.runSteps(1000):
print('\rstep: %d' % step, end = '', flush = True)
if step % 10 == 0:
results = proj.get_images()
pilImage = misc.convert_to_pil_image(misc.create_image_grid(results), drange = [-1,1])
pilImage.save('./images/project-%d.png' % step)
print('t6:', time.time() - t0)
dlatents = proj.get_dlatents()
noises = proj.get_noises()
print('dlatents:', dlatents.shape)
print('noises:', len(noises), noises[0].shape, noises[-1].shape)
if __name__ == "__main__":
main()