forked from k-l-lambda/stylegan-web
-
Notifications
You must be signed in to change notification settings - Fork 0
/
http_server.py
293 lines (209 loc) · 8.01 KB
/
http_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import os
import sys
import io
import time
from dotenv import load_dotenv
import flask
import pickle
import PIL.Image
import base64
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from threading import Lock
import json
import re
import dnnlib.tflib
from training import misc
from projector import Projector
import latentCode
load_dotenv(dotenv_path = './.env.local')
load_dotenv()
g_Gs = None
g_Synthesis = None
g_Lpips = None
g_Projector = None
g_Session = None
g_LoadingMutex = Lock()
def loadGs():
with g_LoadingMutex:
global g_Gs, g_Synthesis
if g_Gs:
return g_Gs, g_Synthesis
global model_name
model_path = os.environ.get('MODEL_PATH_%s' % model_name)
if model_path is None:
print('invalid model name:', model_path)
return
global g_Session
if g_Session is None:
print('Initializing dnnlib...')
dnnlib.tflib.init_tf()
g_Session = tf.get_default_session()
print('Loading model %s ...' % model_name)
with open(model_path, 'rb') as f:
with g_Session.as_default():
Gi, Di, Gs = pickle.load(f)
g_Gs = Gs
## burn one
#images = Gs.run(np.zeros((1, Gs.input_shape[1])), None, truncation_psi = 0.7, output_transform = dict(func = dnnlib.tflib.convert_images_to_uint8, nchw_to_nhwc = True))
#print('images:', g_Session, images)
#print('Gs.components.synthesis.input_shape:', Gs.components.synthesis.input_shape)
global g_dLatentsIn
g_dLatentsIn = tf.placeholder(tf.float32, [Gs.components.synthesis.input_shape[1] * Gs.input_shape[1]])
dlatents_expr = tf.reshape(g_dLatentsIn, [1, Gs.components.synthesis.input_shape[1], Gs.input_shape[1]])
g_Synthesis = Gs.components.synthesis.get_output_for(dlatents_expr, randomize_noise = False)
return g_Gs, g_Synthesis
def loadLpips():
with g_LoadingMutex:
global g_Lpips
if g_Lpips:
return g_Lpips
model_path = os.environ.get('MODEL_PATH_LPIPS')
if model_path is None:
print('invalid model name:', model_path)
return
global g_Session
if g_Session is None:
print('Initializing dnnlib...')
dnnlib.tflib.init_tf()
g_Session = tf.get_default_session()
print('Loading model lpips ...')
with open(model_path, 'rb') as f:
with g_Session.as_default():
lpips = pickle.load(f)
g_Lpips = lpips
return g_Lpips
def loadProjector():
global g_Projector
if g_Projector:
return g_Projector
gs, _ = loadGs()
lpips = loadLpips()
g_Projector = Projector()
g_Projector.regularize_noise_weight = float(os.environ.get('REGULARIZE_NOISE_WEIGHT', 1e5))
g_Projector.initial_noise_factor = float(os.environ.get('INITIAL_NOISE_FACTOR', 0.05))
g_Projector.uniform_latents = int(os.environ.get('UNIFORM_LATENTS', 0)) > 0
g_Projector.euclidean_dist_weight = float(os.environ.get('EUCLIDEAN_DIST_WEIGHT', 1))
g_Projector.regularize_magnitude_weight = float(os.environ.get('REGULARIZE_MAGNITUDE_WEIGHT', 0))
g_Projector.set_network(gs, lpips)
return g_Projector
app = flask.Flask(__name__, static_url_path = '', static_folder = './static')
DIST_DIR = './dist'
@app.route('/bundles/<path:filename>')
def bundle(filename):
if re.match(r'.*\.bundle\.js$', filename):
return flask.send_from_directory(DIST_DIR, filename)
flask.abort(404, 'Invalid request path.')
pageRouters = {
'/': 'index.html',
'/projector/': 'projector.html',
'/merger/': 'merger.html',
'/mapping-viewer/': 'mappingViewer.html',
}
for path in pageRouters:
def getHandler(filename):
return lambda: flask.send_from_directory(DIST_DIR, filename)
app.route(path, endpoint = 'handler' + path)(getHandler(pageRouters[path]))
@app.route('/spec', methods=['GET'])
def spec():
global model_name
model, _ = loadGs()
return dict(
model = model_name,
latents_dimensions = model.input_shape[1],
image_shape = model.output_shape,
synthesis_input_shape = model.components.synthesis.input_shape)
@app.route('/map-z-w', methods=['GET'])
def mapZtoW():
zStr = flask.request.args.get('z')
psi = flask.request.args.get('psi')
psi = psi and float(psi)
gs, _ = loadGs()
latent_len = gs.input_shape[1]
z = latentCode.decodeFloat32(zStr, latent_len).reshape([1, latent_len])
w = gs.components.mapping.run(z, None)[:, :1, :].reshape([latent_len])
if psi is not None:
proj = loadProjector()
avg = proj._dlatent_avg.reshape([latent_len])
w = avg + psi * (w - avg)
return latentCode.encodeFloat32(w)
@app.route('/generate', methods=['GET'])
def generate():
latentsStr = flask.request.args.get('latents')
latentsStrX = flask.request.args.get('xlatents')
psi = float(flask.request.args.get('psi', 0.5))
#use_noise = bool(flask.request.args.get('use_noise', True))
randomize_noise = int(flask.request.args.get('randomize_noise', 0))
fromW = int(flask.request.args.get('fromW', 0))
global g_Session
global g_dLatentsIn
#print('g_Session.1:', g_Session)
gs, synthesis = loadGs()
latent_len = gs.input_shape[1]
if latentsStrX:
latents = latentCode.decodeFixed16(latentsStrX, g_dLatentsIn.shape[0])
else:
latents = latentCode.decodeFloat32(latentsStr, latent_len)
t0 = time.time()
# Generate image.
fmt = dict(func = dnnlib.tflib.convert_images_to_uint8, nchw_to_nhwc = True)
with g_Session.as_default():
if fromW != 0:
#print('latentsStr:', latentsStr)
#print('shapes:', g_dLatentsIn.shape, latents.shape)
if latents.shape[0] < g_dLatentsIn.shape[0]:
latents = np.tile(latents, g_dLatentsIn.shape[0] // latents.shape[0])
images = dnnlib.tflib.run(synthesis, {g_dLatentsIn: latents})
image = misc.convert_to_pil_image(misc.create_image_grid(images), drange = [-1,1])
else:
latents = latents.reshape([1, latent_len])
images = gs.run(latents, None, truncation_psi = psi, randomize_noise = randomize_noise != 0, output_transform = fmt)
image = PIL.Image.fromarray(images[0], 'RGB')
print('generation cost:', time.time() - t0)
# encode to PNG
fp = io.BytesIO()
image.save(fp, PIL.Image.registered_extensions()['.png'])
return flask.Response(fp.getvalue(), mimetype = 'image/png')
#LPIPS_IMAGE_SHAPE = tuple(map(int, os.environ.get('LPIPS_IMAGE_SHAPE', '256,256').split(',')))
@app.route('/project', methods=['POST'])
def project():
steps = int(flask.request.args.get('steps', 1000))
yieldInterval = int(flask.request.args.get('yieldInterval', 10))
#regularizeNoiseWeight = float(flask.request.args.get('regularizeNoiseWeight', 1e5))
imageFile = flask.request.files.get('image')
if not imageFile:
flask.abort(400, 'image field is requested.')
Gs, _ = loadGs()
image = PIL.Image.open(imageFile.stream).resize((Gs.output_shape[2], Gs.output_shape[3]), PIL.Image.ANTIALIAS)
image_array = np.array(image)[:, :, :3].swapaxes(0, 2).swapaxes(1, 2)
image_array = misc.adjust_dynamic_range(image_array, [0, 255], [-1, 1])
#print('shape:', image_array.shape)
def gen():
proj = loadProjector()
#proj.regularize_noise_weight = regularizeNoiseWeight
proj.start([image_array])
for step in proj.runSteps(steps):
print('\rProjecting: %d / %d' % (step, steps), end = '', flush = True)
if step % yieldInterval == 0:
dlatents = proj.get_dlatents()
images = proj.get_images()
pilImage = misc.convert_to_pil_image(misc.create_image_grid(images), drange = [-1,1])
fp = io.BytesIO()
pilImage.save(fp, PIL.Image.registered_extensions()['.png'])
imgUrl = 'data:image/png;base64,%s' % base64.b64encode(fp.getvalue()).decode('ascii')
#latentsList = list(dlatents.reshape((-1, dlatents.shape[2])))
#latentCodes = list(map(lambda latents: latentCode.encodeFloat32(latents).decode('ascii'), latentsList))
latentCodes = latentCode.encodeFixed16(dlatents.flatten()).decode('ascii')
yield json.dumps(dict(step = step, img = imgUrl, latentCodes = latentCodes)) + '\n\n'
print('\rProjecting finished.%s' % (' ' * 8))
return flask.Response(gen(), mimetype = 'text/plain')
def main(argv):
global model_name
model_name = argv[1] if len(argv) > 1 else os.environ.get('MODEL_NAME')
try:
app.run(port = int(os.getenv('HTTP_PORT')), host = os.getenv('HTTP_HOST'), threaded = False)
except:
print('server interrupted:', sys.exc_info())
if __name__ == "__main__":
main(sys.argv)