Skip to content

Latest commit

 

History

History
1444 lines (1136 loc) · 34 KB

readme.md

File metadata and controls

1444 lines (1136 loc) · 34 KB

Learn to program in ODS' Online Dev School program where we train new web developers in today's hottest technologies like HTML5, CSS3, Javascript/E6 and Ruby!

Dreamr's Ruby Style Guide

Table of Contents

Source Code Layout

Nearly everybody is convinced that every style but their own is ugly and unreadable. Leave out the "but their own" and they're probably right...
-- Jerry Coffin (on indentation)

  • Use UTF-8 as the source file encoding.

  • Use two spaces per indentation level.

    # good
    def some_method
      do_something
    end
    
    # bad - four spaces
    def some_method
        do_something
    end
  • Use Unix-style line endings. (*BSD/Solaris/Linux/OSX users are covered by default, Windows users have to be extra careful.)

    • If you're using Git you might want to add the following configuration setting to protect your project from Windows line endings creeping in:

      $ git config --global core.autocrlf true

  • Use spaces around operators, after commas, colons and semicolons, around { and before }. Whitespace might be (mostly) irrelevant to the Ruby interpreter, but its proper use is the key to writing easily readable code.

    sum = 1 + 2
    a, b = 1, 2
    1 > 2 ? true : false; puts 'Hi'
    [1, 2, 3].each { |e| puts e }

    The only exception is when using the exponent operator:

    # bad
    e = M * c ** 2
    
    # good
    e = M * c**2
  • No spaces after (, [ or before ], ).

    some(arg).other
    [1, 2, 3].length
  • Indent when as deep as case. I know that many would disagree with this one, but it's the style established in both the "The Ruby Programming Language" and "Programming Ruby".

    case
    when song.name == 'Misty'
      puts 'Not again!'
    when song.duration > 120
      puts 'Too long!'
    when Time.now.hour > 21
      puts "It's too late"
    else
      song.play
    end
    
    kind = case year
           when 1850..1889 then 'Blues'
           when 1890..1909 then 'Ragtime'
           when 1910..1929 then 'New Orleans Jazz'
           when 1930..1939 then 'Swing'
           when 1940..1950 then 'Bebop'
           else 'Jazz'
           end
  • Use empty lines between defs and to break up a method into logical paragraphs.

    def some_method
      data = initialize(options)
    
      data.manipulate!
    
      data.result
    end
    
    def some_method
      result
    end
  • Align the parameters of a method call if they span over multiple lines.

    # starting point (line is too long)
    def send_mail(source)
      Mailer.deliver(to: '[email protected]', from: '[email protected]', subject: 'Important message', body: source.text)
    end
    
    # bad (normal indent)
    def send_mail(source)
      Mailer.deliver(
        to: '[email protected]',
        from: '[email protected]',
        subject: 'Important message',
        body: source.text)
    end
    
    # bad (double indent)
    def send_mail(source)
      Mailer.deliver(
          to: '[email protected]',
          from: '[email protected]',
          subject: 'Important message',
          body: source.text)
    end
    
    # good
    def send_mail(source)
      Mailer.deliver(to: '[email protected]',
                     from: '[email protected]',
                     subject: 'Important message',
                     body: source.text)
    end
  • Use RDoc and its conventions for API documentation. Don't put an empty line between the comment block and the def.

  • Keep lines fewer than 80 characters.

  • Avoid trailing whitespace.

Syntax

  • Use def with parentheses when there are arguments. Omit the parentheses when the method doesn't accept any arguments.

    def some_method
      # body omitted
    end
    
    def some_method_with_arguments(arg1, arg2)
      # body omitted
    end
  • Never use for, unless you know exactly why. Most of the time iterators should be used instead. for is implemented in terms of each (so you're adding a level of indirection), but with a twist - for doesn't introduce a new scope (unlike each) and variables defined in its block will be visible outside it.

    arr = [1, 2, 3]
    
    # bad
    for elem in arr do
      puts elem
    end
    
    # good
    arr.each { |elem| puts elem }
  • Never use then for multi-line if/unless.

    # bad
    if some_condition then
      # body omitted
    end
    
    # good
    if some_condition
      # body omitted
    end
  • Favor the ternary operator(?:) over if/then/else/end constructs. It's more common and obviously more concise.

    # bad
    result = if some_condition then something else something_else end
    
    # good
    result = some_condition ? something : something_else
  • Use one expression per branch in a ternary operator. This also means that ternary operators must not be nested. Prefer if/else constructs in these cases.

    # bad
    some_condition ? (nested_condition ? nested_something : nested_something_else) : something_else
    
    # good
    if some_condition
      nested_condition ? nested_something : nested_something_else
    else
      something_else
    end
  • Never use if x: ... - it is removed in Ruby 1.9. Use the ternary operator instead.

    # bad
    result = if some_condition: something else something_else end
    
    # good
    result = some_condition ? something : something_else
  • Never use if x; .... Use the ternary operator instead.

  • Use when x then ... for one-line cases. The alternative syntax when x: ... is removed in Ruby 1.9.

  • Never use when x; .... See the previous rule.

  • Use &&/|| for boolean expressions, and/or for control flow. (Rule of thumb: If you have to use outer parentheses, you are using the wrong operators.)

    # boolean expression
    if some_condition && some_other_condition
      do_something
    end
    
    # control flow
    document.saved? or document.save!
  • Avoid multi-line ?: (the ternary operator), use if/unless instead.

  • Favor modifier if/unless usage when you have a single-line body. Another good alternative is the usage of control flow and/or.

    # bad
    if some_condition
      do_something
    end
    
    # good
    do_something if some_condition
    
    # another good option
    some_condition and do_something
  • Favor unless over if for negative conditions (or control flow or).

    # bad
    do_something if !some_condition
    
    # good
    do_something unless some_condition
    
    # another good option
    some_condition or do_something
  • Never use unless with else. Rewrite these with the positive case first.

    # bad
    unless success?
      puts 'failure'
    else
      puts 'success'
    end
    
    # good
    if success?
      puts 'success'
    else
      puts 'failure'
    end
  • Never have an if statement with an elsif that does not include an else

    # bad
    puts if is_temp?(file)
      'temp'
    elsif is_perm?(file)
      'perm'
    end
    
    # good
    puts if is_temp?(file)
      'temp'
    elsif is_perm?(file)
      'perm'
    else
      raise 'FileType not supported'
    end
  • Never have an case statement that does not include an else

    # bad
    kind = case year
           when 1850..1889 then 'Blues'
           when 1890..1909 then 'Ragtime'
           when 1910..1929 then 'New Orleans Jazz'
           when 1930..1939 then 'Swing'
           when 1940..1950 then 'Bebop'
           end
           
     # good
     kind = case year
            when 1850..1889 then 'Blues'
            when 1890..1909 then 'Ragtime'
            when 1910..1929 then 'New Orleans Jazz'
            when 1930..1939 then 'Swing'
            when 1940..1950 then 'Bebop'
            else
              raise 'Year in music not accounted for'
            end
  • Don't use parentheses around the condition of an if/unless/while, unless the condition contains an assignment (see "Using the return value of =" below).

    # bad
    if (x > 10)
      # body omitted
    end
    
    # good
    if x > 10
      # body omitted
    end
    
    # ok
    if (x = self.next_value)
      # body omitted
    end
  • Favor modifier while/until usage when you have a single-line body.

    # bad
    while some_condition
      do_something
    end
    
    # good
    do_something while some_condition
  • Favor until over while for negative conditions.

    # bad
    do_something while !some_condition
    
    # good
    do_something until some_condition
  • Omit parentheses around parameters for methods that are part of an internal DSL (e.g. Rake, Rails, RSpec), methods that are with "keyword" status in Ruby (e.g. attr_reader, puts) and attribute access methods. Use parentheses around the arguments of all other method invocations.

    class Person
      attr_reader :name, :age
    
      # omitted
    end
    
    temperance = Person.new('Temperance', 30)
    temperance.name
    
    puts temperance.age
    
    x = Math.sin(y)
    array.delete(e)
  • Prefer {...} over do...end for single-line blocks. Avoid using {...} for multi-line blocks (multiline chaining is always ugly). Always use do...end for "control flow" and "method definitions" (e.g. in Rakefiles and certain DSLs). Avoid do...end when chaining.

    names = ['Bozhidar', 'Steve', 'Sarah']
    
    # good
    names.each { |name| puts name }
    
    # bad
    names.each do |name|
      puts name
    end
    
    # good
    names.select { |name| name.start_with?('S') }.map { |name| name.upcase }
    
    # bad
    names.select do |name|
      name.start_with?('S')
    end.map { |name| name.upcase }

    Some will argue that multiline chaining would look OK with the use of {...}, but they should ask themselves - it this code really readable and can't the blocks contents be extracted into nifty methods.

  • Avoid return where not required.

    # bad
    def some_method(some_arr)
      return some_arr.size
    end
    
    # good
    def some_method(some_arr)
      some_arr.size
    end
  • Use spaces around the = operator when assigning default values to method parameters:

    # bad
    def some_method(arg1=:default, arg2=nil, arg3=[])
      # do something...
    end
    
    # good
    def some_method(arg1 = :default, arg2 = nil, arg3 = [])
      # do something...
    end

    While several Ruby books suggest the first style, the second is much more prominent in practice (and arguably a bit more readable).

  • Avoid line continuation (\) where not required. In practice, avoid using line continuations at all.

    # bad
    result = 1 - \
             2
    
    # good (but still ugly as hell)
    result = 1 \
             - 2
  • Using the return value of = (an assignment) is ok, but surround the assignment with parenthesis.

    # good - shows intented use of assignment
    if (v = array.grep(/foo/)) ...
    
    # bad
    if v = array.grep(/foo/) ...
    
    # also good - shows intended use of assignment and has correct precedence.
    if (v = self.next_value) == 'hello' ...
  • Use ||= freely to initialize variables.

    # set name to Bozhidar, only if it's nil or false
    name ||= 'Bozhidar'
  • Don't use ||= to initialize boolean variables. (Consider what would happen if the current value happened to be false.)

    # bad - would set enabled to true even if it was false
    enabled ||= true
    
    # good
    enabled = true if enabled.nil?
  • Avoid using Perl-style special variables (like $0-9, `$``, etc. ). They are quite cryptic and their use in anything but one-liner scripts is discouraged.

  • Never put a space between a method name and the opening parenthesis.

    # bad
    f (3 + 2) + 1
    
    # good
    f(3 + 2) + 1
  • If the first argument to a method begins with an open parenthesis, always use parentheses in the method invocation. For example, write f((3 + 2) + 1).

  • Always run the Ruby interpreter with the -w option so it will warn you if you forget either of the rules above!

  • When the keys of your hash are symbols use the Ruby 1.9 hash literal syntax.

    # bad
    hash = { :one => 1, :two => 2 }
    
    # good
    hash = { one: 1, two: 2 }
  • Use the new lambda literal syntax.

    # bad
    lambda = lambda { |a, b| a + b }
    lambda.call(1, 2)
    
    # good
    lambda = ->(a, b) { a + b }
    lambda.(1, 2)
  • Use _ for unused block parameters.

    # bad
    result = hash.map { |k, v| v + 1 }
    
    # good
    result = hash.map { |_, v| v + 1 }

Naming

The only real difficulties in programming are cache invalidation and naming things.
-- Phil Karlton

  • Use snake_case for methods and variables.

  • Use CamelCase for classes and modules. (Keep acronyms like HTTP, RFC, XML uppercase.)

  • Use SCREAMING_SNAKE_CASE for other constants.

  • The names of predicate methods (methods that return a boolean value) should end in a question mark. (i.e. Array#empty?).

  • The names of potentially "dangerous" methods (i.e. methods that modify self or the arguments, exit! (doesn't run the finalizers like exit does), etc.) should end with an exclamation mark if there exists a safe version of that dangerous method.

    # bad - there is not matching 'safe' method
    class Person
      def update!
      end
    end
    
    # good
    class Person
      def update
      end
    end
    
    # good
    class Person
      def update!
      end
    
      def update
      end
    end
  • Define the non-bang (safe) method in terms of the bang (dangerous) one if possible.

    class Array
      def flatten_once!
        res = []
    
        each do |e|
          [*e].each { |f| res << f }
        end
    
        replace(res)
      end
    
      def flatten_once
        dup.flatten_once!
      end
    end
  • When using reduce with short blocks, name the arguments |a, e| (accumulator, element).

  • When defining binary operators, name the argument other.

    def +(other)
      # body omitted
    end
  • Prefer map over collect, find over detect, select over find_all, reduce over inject and size over length. This is not a hard requirement; if the use of the alias enhances readability, it's ok to use it. The rhyming methods are inherited from Smalltalk and are not common in other programming languages. The reason the use of select is encouraged over find_all is that it goes together nicely with reject and its name is pretty self-explanatory.

Comments

Good code is its own best documentation. As you're about to add a comment, ask yourself, "How can I improve the code so that this comment isn't needed?" Improve the code and then document it to make it even clearer.
-- Steve McConnell

  • Write self-documenting code and ignore the rest of this section. Seriously!

  • Comments longer than a word are capitalized and use punctuation. Use one space after periods.

  • Avoid superfluous comments.

    # bad
    counter += 1 # increments counter by one
  • Keep existing comments up-to-date. An outdated is worse than no comment at all.

Good code is like a good joke - it needs no explanation.
-- Russ Olsen

  • Avoid writing comments to explain bad code. Refactor the code to make it self-explanatory. (Do or do not - there is no try. --Yoda)

Annotations

  • Annotations should usually be written on the line immediately above the relevant code.

  • The annotation keyword is followed by a colon and a space, then a note describing the problem.

  • If multiple lines are required to describe the problem, subsequent lines should be indented two spaces after the #.

    def bar
      # FIXME: This has crashed occasionally since v3.2.1. It may
      #   be related to the BarBazUtil upgrade.
      baz(:quux)
    end
  • In cases where the problem is so obvious that any documentation would be redundant, annotations may be left at the end of the offending line with no note. This usage should be the exception and not the rule.

    def bar
      sleep 100 # OPTIMIZE
    end
  • Use TODO to note missing features or functionality that should be added at a later date.

  • Use FIXME to note broken code that needs to be fixed.

  • Use OPTIMIZE to note slow or inefficient code that may cause performance problems.

  • Use HACK to note code smells where questionable coding practices were used and should be refactored away.

  • Use REVIEW to note anything that should be looked at to confirm it is working as intended. For example: REVIEW: Are we sure this is how the client does X currently?

  • Use other custom annotation keywords if it feels appropriate, but be sure to document them in your project's README or similar.

Classes

  • When designing class hierarchies make sure that they conform to the Liskov Substitution Principle.

  • Try to make your classes as [SOLID](http://en.wikipedia.org/wiki/SOLID_(object-oriented_design\)) as possible.

  • Always supply a proper to_s method for classes that represent domain objects.

    class Person
      attr_reader :first_name, :last_name
    
      def initialize(first_name, last_name)
        @first_name = first_name
        @last_name = last_name
      end
    
      def to_s
        "#@first_name #@last_name"
      end
    end
  • Use the attr family of functions to define trivial accessors or mutators.

    # bad
    class Person
      def initialize(first_name, last_name)
        @first_name = first_name
        @last_name = last_name
      end
    
      def first_name
        @first_name
      end
    
      def last_name
        @last_name
      end
    end
    
    # good
    class Person
      attr_reader :first_name, :last_name
    
      def initialize(first_name, last_name)
        @first_name = first_name
        @last_name = last_name
      end
    end
  • Consider using Struct.new, which defines the trivial accessors, constructor and comparison operators for you.

    # good
    class Person
      attr_reader :first_name, :last_name
    
      def initialize(first_name, last_name)
        @first_name = first_name
        @last_name = last_name
      end
    end
    
    # better
    class Person < Struct.new(:first_name, :last_name)
    end
  • Consider adding factory methods to provide additional sensible ways to create instances of a particular class.

    class Person
      def self.create(options_hash)
        # body omitted
      end
    end
  • Prefer duck-typing over inheritance.

    # bad
    class Animal
      # abstract method
      def speak
      end
    end
    
    # extend superclass
    class Duck < Animal
      def speak
        puts 'Quack! Quack'
      end
    end
    
    # extend superclass
    class Dog < Animal
      def speak
        puts 'Bau! Bau!'
      end
    end
    
    # good
    class Duck
      def speak
        puts 'Quack! Quack'
      end
    end
    
    class Dog
      def speak
        puts 'Bau! Bau!'
      end
    end
  • Avoid the usage of class (@@) variables due to their "nasty" behavior in inheritance.

    class Parent
      @@class_var = 'parent'
    
      def self.print_class_var
        puts @@class_var
      end
    end
    
    class Child < Parent
      @@class_var = 'child'
    end
    
    Parent.print_class_var # => will print "child"

    As you can see all the classes in a class hierarchy actually share one class variable. Class instance variables should usually be preferred over class variables.

  • Assign proper visibility levels to methods (private, protected) in accordance with their intended usage. Don't go off leaving everything public (which is the default). After all we're coding in Ruby now, not in Python.

  • Indent the public, protected, and private methods as much the method definitions they apply to. Leave one blank line above them.

    class SomeClass
      def public_method
        # ...
      end
    
      private
      def private_method
        # ...
      end
    end
  • Use def self.method to define singleton methods. This makes the methods more resistant to refactoring changes.

    class TestClass
      # bad
      def TestClass.some_method
        # body omitted
      end
    
      # good
      def self.some_other_method
        # body omitted
      end
    
      # Also possible and convenient when you
      # have to define many singleton methods.
      class << self
        def first_method
          # body omitted
        end
    
        def second_method_etc
          # body omitted
        end
      end
    end

Exceptions

  • Signal exceptions using the fail keyword. Use raise only when catching an exception and re-raising it (because here you're not failing, but explicitly and purposefully raising an exception).

    begin
      fail 'Oops';
    rescue => error
      raise if error.message != 'Oops'
    end
  • Never return form an ensure block. If you explicitly return from a method inside an ensure block, the return will take precedence over any exception being raised, and the method will return as if no exception had been raised at all. In effect, the exception will be silently thrown away.

    def foo
      begin
        fail
      ensure
        return 'very bad idea'
      end
    end
  • Use implicit begin blocks when possible.

    # bad
    def foo
      begin
        # main logic goes here
      rescue
        # failure handling goes here
      end
    end
    
    # good
    def foo
      # main logic goes here
    rescue
      # failure handling goes here
    end
  • Mitigate the proliferation of begin blocks via the use of contingency methods (a term coined by Avdi Grimm).

    # bad
    begin
      something_that_might_fail
    rescue IOError
      # handle IOError
    end
    
    begin
      something_else_that_might_fail
    rescue IOError
      # handle IOError
    end
    
    # good
    def with_io_error_handling
       yield
    rescue
      # handle IOError
    end
    
    with_io_error_handling { something_that_might_fail }
    
    with_io_error_handling { something_else_that_might_fail }
  • Don't suppress exceptions.

    # bad
    begin
      # an exception occurs here
    rescue SomeError
      # the rescue clause does absolutely nothing
    end
    
    # bad
    do_something rescue nil
  • Don't use exceptions for flow of control.

    # bad
    begin
      n / d
    rescue ZeroDivisionError
      puts 'Cannot divide by 0!'
    end
    
    # good
    if d.zero?
      puts 'Cannot divide by 0!'
    else
      n / d
    end
  • Avoid rescuing the Exception class. This will trap signals and calls to exit, requiring you to kill -9 the process.

    # bad
    begin
      # calls to exit and kill signals will be caught (except kill -9)
      exit
    rescue Exception
      puts "you didn't really want to exit, right?"
      # exception handling
    end
    
    # good
    begin
      # a blind rescue rescues from StandardError, not Exception as many
      # programmers assume.
    rescue => e
      # exception handling
    end
    
    # also good
    begin
      # an exception occurs here
    
    rescue StandardError => e
      # exception handling
    end
  • Put more specific exceptions higher up the rescue chain, otherwise they'll never be rescued from.

    # bad
    begin
      # some code
    rescue Exception => e
      # some handling
    rescue StandardError => e
      # some handling
    end
    
    # good
    begin
      # some code
    rescue StandardError => e
      # some handling
    rescue Exception => e
      # some handling
    end
  • Release external resources obtained by your program in an ensure block.

    f = File.open('testfile')
    begin
      # .. process
    rescue
      # .. handle error
    ensure
      f.close unless f.nil?
    end
  • Favor the use of exceptions for the standard library over introducing new exception classes.

Collections

  • Prefer literal array and hash creation notation (unless you need to pass parameters to their constructors, that is).

    # bad
    arr = Array.new
    hash = Hash.new
    
    # good
    arr = []
    hash = {}
  • Prefer %w to the literal array syntax when you need an array of strings.

    # bad
    STATES = ['draft', 'open', 'closed']
    
    # good
    STATES = %w(draft open closed)
  • Avoid the creation of huge gaps in arrays.

    arr = []
    arr[100] = 1 # now you have an array with lots of nils
  • Use Set instead of Array when dealing with unique elements. Set implements a collection of unordered values with no duplicates. This is a hybrid of Array's intuitive inter-operation facilities and Hash's fast lookup.

  • Use symbols instead of strings as hash keys.

    # bad
    hash = { 'one' => 1, 'two' => 2, 'three' => 3 }
    
    # good
    hash = { one: 1, two: 2, three: 3 }
  • Avoid the use of mutable object as hash keys.

  • Use the new 1.9 literal hash syntax in preference to the hashrocket syntax.

    # bad
    hash = { :one => 1, :two => 2, :three => 3 }
    
    # good
    hash = { one: 1, two: 2, three: 3 }
  • Rely on the fact that hashes in 1.9 are ordered.

  • Never modify a collection while traversing it.

Strings

  • Prefer string interpolation instead of string concatenation:

    # bad
    email_with_name = user.name + ' <' + user.email + '>'
    
    # good
    email_with_name = "#{user.name} <#{user.email}>"
  • Consider padding string interpolation code with space. It more clearly sets the code apart from the string.

    "#{ user.last_name }, #{ user.first_name }"
  • Prefer single-quoted strings when you don't need string interpolation or special symbols such as \t, \n, ', etc.

    # bad
    name = "Bozhidar"
    
    # good
    name = 'Bozhidar'
  • Don't use {} around instance variables being interpolated into a string.

    class Person
      attr_reader :first_name, :last_name
    
      def initialize(first_name, last_name)
        @first_name = first_name
        @last_name = last_name
      end
    
      # bad
      def to_s
        "#{@first_name} #{@last_name}"
      end
    
      # good
      def to_s
        "#@first_name #@last_name"
      end
    end
  • Avoid using String#+ when you need to construct large data chunks. Instead, use String#<<. Concatenation mutates the string instance in-place and is always faster than String#+, which creates a bunch of new string objects.

    # good and also fast
    html = ''
    html << '<h1>Page title</h1>'
    
    paragraphs.each do |paragraph|
      html << "<p>#{paragraph}</p>"
    end

Regular Expressions

  • Don't use regular expressions if you just need plain text search in string: string['text']

  • For simple constructions you can use regexp directly through string index.

    match = string[/regexp/]             # get content of matched regexp
    first_group = string[/text(grp)/, 1] # get content of captured group
    string[/text (grp)/, 1] = 'replace'  # string => 'text replace'
  • Use non capturing groups when you don't use captured result of parenthesis.

    /(first|second)/   # bad
    /(?:first|second)/ # good
  • Avoid using $1-9 as it can be hard to track what they contain. Named groups can be used instead.

    # bad
    /(regexp)/ =~ string
    ...
    process $1
    
    # good
    /(?<meaningful_var>regexp)/ =~ string
    ...
    process meaningful_var
  • Character classes have only few special characters you should care about: ^, -, \, ], so don't escape . or brackets in [].

  • Be careful with ^ and $ as they match start/end of line, not string endings. If you want to match the whole string use: \A and \z (not to be confused with \Z which is the equivalent of /\n?\z/).

    string = "some injection\nusername"
    string[/^username$/]   # matches
    string[/\Ausername\z/] # don't match
  • Use x modifier for complex regexps. This makes them more readable and you can add some useful comments. Just be careful as spaces are ignored.

    regexp = %r{
      start         # some text
      \s            # white space char
      (group)       # first group
      (?:alt1|alt2) # some alternation
      end
    }x
  • For complex replacements sub/gsub can be used with block or hash.

Percent Literals

  • Use %w freely.

    STATES = %w(draft open closed)
  • Use %() for single-line strings which require both interpolation and embedded double-quotes. For multi-line strings, prefer heredocs.

    # bad (no interpolation needed)
    %(<div class="text">Some text</div>)
    # should be '<div class="text">Some text</div>'
    
    # bad (no double-quotes)
    %(This is #{quality} style)
    # should be "This is #{quality} style"
    
    # bad (multiple lines)
    %(<div>\n<span class="big">#{exclamation}</span>\n</div>)
    # should be a heredoc.
    
    # good (requires interpolation, has quotes, single line)
    %(<tr><td class="name">#{name}</td>)
  • Use %r only for regular expressions matching more than one '/' character.

    # bad
    %r(\s+)
    
    # still bad
    %r(^/(.*)$)
    # should be /^\/(.*)$/
    
    # good
    %r(^/blog/2011/(.*)$)
  • Avoid %q, %Q, %x, %s, and %W.

  • Prefer () as delimiters for all % literals.

Metaprogramming

  • Do not mess around in core classes when writing LIBRARIES. (Do not monkey patch them.)

  • When writing your APPLICATION, extend core classes freely, but do so with documentation and the principle of least surprise.

  • The block form of class_eval is preferable to the string-interpolated form.

    • when you use the string-interpolated form, always supply __FILE__ and __LINE__, so that your backtraces make sense:

      class_eval 'def use_relative_model_naming?; true; end', __FILE__, __LINE__
    • define_method is preferable to class_eval{ def ... }

  • When using class_eval (or other eval) with string interpolation, add a comment block showing its appearance if interpolated (a practice I learned from the rails code):

    # from activesupport/lib/active_support/core_ext/string/output_safety.rb
    UNSAFE_STRING_METHODS.each do |unsafe_method|
      if 'String'.respond_to?(unsafe_method)
        class_eval <<-EOT, __FILE__, __LINE__ + 1
          def #{unsafe_method}(*args, &block)       # def capitalize(*args, &block)
            to_str.#{unsafe_method}(*args, &block)  #   to_str.capitalize(*args, &block)
          end                                       # end
    
          def #{unsafe_method}!(*args)              # def capitalize!(*args)
            @dirty = true                           #   @dirty = true
            super                                   #   super
          end                                       # end
        EOT
      end
    end
  • avoid using method_missing for metaprogramming. Backtraces become messy; the behavior is not listed in #methods; misspelled method calls might silently work (nukes.launch_state = false). Consider using delegation, proxy, or define_method instead. If you must, use method_missing,

    • be sure to also define respond_to?

    • only catch methods with a well-defined prefix, such as find_by_* -- make your code as assertive as possible.

    • call super at the end of your statement

    • delegate to assertive, non-magical methods:

      # bad
      def method_missing?(meth, *args, &block)
        if /^find_by_(?<prop>.*)/ =~ meth
          # ... lots of code to do a find_by
        else
          super
        end
      end
      
      # good
      def method_missing?(meth, *args, &block)
        if /^find_by_(?<prop>.*)/ =~ meth
          find_by(prop, *args, &block)
        else
          super
        end
      end
      
      # best of all, though, would to define_method as each findable attribute is declared

Misc

  • Write ruby -w safe code.

  • Avoid hashes as optional parameters. Does the method do too much?

  • Avoid methods longer than 10 LOC (lines of code). Ideally, most methods will be shorter than 5 LOC. Empty lines do not contribute to the relevant LOC.

  • Avoid parameter lists longer than three or four parameters.

  • If you really have to, add "global" methods to Kernel and make them private.

  • Use class instance variables instead of global variables.

    #bad
    $foo_bar = 1
    
    #good
    class Foo
      class << self
        attr_accessor :bar
      end
    end
    
    Foo.bar = 1
  • Avoid alias when alias_method will do.

  • Use OptionParser for parsing complex command line options and ruby -s for trivial command line options.

  • Code in a functional way, avoiding mutation when that makes sense.

  • Avoid needless metaprogramming, use it for better organized code.

  • Do not mutate arguments unless that is the purpose of the method.

  • Avoid more than three levels of block nesting.

  • Be consistent. In an ideal world, be consistent with these guidelines.

  • Use common sense.