-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
610 lines (494 loc) · 22 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
from __future__ import unicode_literals
import abc
import gzip
import pickle
from io import open
import os
import six
import sys
from six.moves import range
import dynet as dn
import numpy as np
from vocab_utils import Dictionary
alpha = 1.6732632423543772848170429916717
scale = 1.0507009873554804934193349852946
epsilon = sys.float_info.epsilon
def selu(x):
""" :type x: dn.Expression
:rtype: dn.Expression """
positive = dn.rectify(x)
positive_indicator = dn.rectify(dn.cdiv(positive, positive + epsilon))
negative = -dn.rectify(-x)
exp_negative = dn.exp(negative) - positive_indicator
exp_negative_minus_alpha = exp_negative * alpha - alpha + positive_indicator * alpha
# x>0: x=x * scale; x<0: x = (alpha * exp(x) - alpha) * scale
ret = (positive + exp_negative_minus_alpha) * scale
return ret
def leaky_relu(x):
""":type x: dn.Expression
:rtype: dn.Expression"""
positive = dn.rectify(x)
negative = dn.rectify(-x) * -0.01
ret = positive + negative
return ret
activations = {'tanh': dn.tanh, 'sigmoid': dn.logistic, 'relu': dn.rectify,
'tanh3': (lambda x: dn.tanh(dn.cwise_multiply(
dn.cwise_multiply(x, x), x))),
'selu': selu, "leaky-relu": leaky_relu}
trainers = {"adam": dn.AdamTrainer, "sgd": dn.SimpleSGDTrainer,
"momentum": dn.MomentumSGDTrainer,
"rmsprop": dn.RMSPropTrainer}
recurrent_builders = {"lstm": dn.VanillaLSTMBuilder, "gru": dn.GRUBuilder}
def recurrent_factory_factory(builder):
# use closure to hold "builder"
return lambda model, dims: BiLSTM(model, dims, builder)
recurrents = {name: recurrent_factory_factory(builder)
for name, builder in recurrent_builders.items()}
# the follow code doesn't work because the builder isn't in closure
# recurrents = {name: (lambda model, dims: BiLSTM(model, dims, builder))
# for name, builder in recurrent_builders.items()}
def get_optimizer(model, options):
# backward compatity
if not hasattr(options, "optimizer"):
return dn.AdamTrainer(model)
return trainers[options.optimizer](
*((model, options.learning_rate)
if options.learning_rate is not None else (model,)))
@six.add_metaclass(abc.ABCMeta)
class DynetSaveable(object):
def __init__(self, parent_saveable):
if isinstance(parent_saveable, dn.Model):
self.model = parent_saveable
elif isinstance(parent_saveable, DynetSaveable):
self.model = parent_saveable.model.add_subcollection()
parent_saveable.params.append((DynetSaveable, self))
else:
raise TypeError
self.params = []
def add_parameters(self, dim, init=None, name=None):
if name is None:
ret = self.model.add_parameters(dim, init)
else:
ret = self.model.add_parameters(dim, init, name)
self.params.append((dn.Parameters, (dim, None, name)))
return ret
def add_lookup_parameters(self, dim, init=None, name=None):
if name is None:
ret = self.model.add_lookup_parameters(dim, init)
else:
ret = self.model.add_lookup_parameters(dim, init, name)
self.params.append((dn.LookupParameters, (dim, init, name)))
return ret
def add_lstm_builder(self, builder, layers, input_dim, hidden_dim):
ret = builder(layers, input_dim, hidden_dim, self.model)
self.params.append((builder, (layers, input_dim, hidden_dim)))
return ret
def get_picklable_obj(self):
""" Faster save/load interface"""
return (self,
[i.as_array() for i in self.model.parameters_list()],
[i.as_array() for i in self.model.lookup_parameters_list()]
)
@classmethod
def from_picklable_obj(cls, obj, model, is_root=True):
self, param_list, lookup_param_list = obj
self.model = model
restored_params = []
for param_type, args in self.params:
if param_type is dn.Parameters:
restored_params.append(model.parameters_from_numpy(param_list.pop(0)))
elif param_type is dn.LookupParameters:
restored_params.append(model.lookup_parameters_from_numpy(lookup_param_list.pop(0)))
elif param_type is DynetSaveable:
sub_component = args
cls.from_picklable_obj((sub_component, param_list, lookup_param_list),
model.add_subcollection(), False)
restored_params.append(sub_component)
elif issubclass(param_type, dn.VanillaLSTMBuilder.__bases__[0]):
builder = param_type(*(args + (model,)))
for rnn_param in builder.param_collection().parameters_list():
rnn_param.set_value(param_list.pop(0))
for rnn_param in builder.param_collection().lookup_parameters_list():
rnn_param.set_value(lookup_param_list.pop(0))
restored_params.append(builder)
else:
raise TypeError(param_type)
if is_root and (param_list or lookup_param_list):
raise TypeError("Unmatched model!")
self.restore_components(restored_params)
return self
@property
def spec(self):
return self
def param_collection(self):
return self.model
@staticmethod
def from_spec(spec, model):
spec.model = model
restored_params = []
for param_type, args in spec.params:
if param_type is dn.Parameters:
args = tuple(i for i in args if i is not None)
restored_params.append(spec.model.add_parameters(*args))
elif param_type is dn.LookupParameters:
args = tuple(i for i in args if i is not None)
restored_params.append(spec.model.add_lookup_parameters(*args))
elif issubclass(param_type, dn.VanillaLSTMBuilder.__bases__[0]):
restored_params.append(param_type(*(args + (spec.model,))))
elif param_type is DynetSaveable:
sub_component = args
sub_component.__class__.from_spec(sub_component, spec.model.add_subcollection())
restored_params.append(sub_component)
else:
raise TypeError(param_type)
spec.restore_components(restored_params)
return spec
def __getstate__(self):
result = {k: v for k, v in self.__dict__.items()
if k != "model" and
not isinstance(v, dn.LookupParameters) and
not isinstance(v, dn.Parameters)
}
return result
@abc.abstractmethod
def restore_components(self, restored_params):
pass
model_formats = ["dynet", "pickle", "pickle-gzip"]
def detect_saved_model_type(prefix):
if os.path.exists(prefix):
return "pickle"
elif os.path.exists(prefix + ".data"):
return "dynet"
elif os.path.exists(prefix + ".gz"):
return "pickle-gzip"
else:
raise FileNotFoundError("Model {} not found!".format(prefix))
def model_load_helper(mode, prefix, model):
"""
Save/Load helper for backward compatibly.
It save/load options and model.
"""
if mode is None:
mode = detect_saved_model_type(prefix)
if mode == "dynet":
with open(prefix + ".options", "rb") as f:
options = pickle.load(f)
return options, dn.load(prefix, model)[0]
elif mode == "pickle":
with open(prefix, "rb") as f:
options, picklable = pickle.load(f)
return options, DynetSaveable.from_picklable_obj(picklable, model)
elif mode == "pickle-gzip":
with open(prefix + ".gz", "rb") as f:
options, picklable = pickle.load(f)
return options, DynetSaveable.from_picklable_obj(picklable, model)
else:
raise TypeError("Invalid model format.")
def model_save_helper(mode, prefix, savable, options):
if mode == "dynet":
# noinspection PyArgumentList
dn.save(prefix, [savable])
with open(prefix + ".options", "wb") as f:
pickle.dump(options, f)
elif mode == "pickle":
picklable = savable.get_picklable_obj()
with open(prefix, "wb") as f:
pickle.dump((options, picklable), f)
elif mode == "pickle-gzip":
picklable = savable.get_picklable_obj()
with gzip.open(prefix, "wb") as f:
pickle.dump((options, picklable), f)
else:
raise TypeError("Invalid model format.")
class DenseLayers(DynetSaveable):
def __init__(self, model, dims, activation, use_bias=None):
"""
:type model: Union[dn.Model, Saveable]
:type dims: [int]
:param model:
:param dims:
"""
if use_bias is None:
self.use_bias = [True] * (len(dims) - 1)
else:
assert len(use_bias) == len(dims) - 1
self.use_bias = use_bias
super(DenseLayers, self).__init__(model)
self.activation = activation
self.layer_count = len(dims) - 1
self.weights = [] # type: [dn.Expression]
self.biases = [] # type: [dn.Expression]
for i in range(len(dims) - 1):
input_dim = dims[i]
output_dim = dims[i + 1]
self.weights.append(self.add_parameters((output_dim, input_dim)))
if self.use_bias[i]:
if isinstance(self.use_bias[i], dn.PyInitializer):
bias = self.add_parameters(output_dim, init=self.use_bias[i])
else:
bias = self.add_parameters(output_dim)
else:
bias = None
self.biases.append(bias)
def __call__(self, input_tensor):
tensor = input_tensor
for idx, w_d in enumerate(zip(self.weights, self.biases)):
weight, bias = w_d
if bias is not None:
tensor = dn.affine_transform([bias.expr(), weight.expr(), tensor])
else:
tensor = weight.expr() * tensor
if idx != len(self.weights) - 1:
tensor = self.activation(tensor)
return tensor
def __getstate__(self):
state_members = ["layer_count", "use_bias", "activation", "params"]
return {i: getattr(self, i) for i in state_members}
def restore_components(self, components):
assert len(components) == self.layer_count + sum(i for i in self.use_bias)
self.weights = []
self.biases = []
pointer = 0
for i in range(self.layer_count):
self.weights.append(components[pointer])
pointer += 1
if self.use_bias[i]:
self.biases.append(components[pointer])
pointer += 1
else:
self.biases.append(None)
assert pointer == len(components)
class BiLSTM(DynetSaveable):
def __init__(self, model, dims, builder=dn.VanillaLSTMBuilder):
super(BiLSTM, self).__init__(model)
self.dims = dims
self.forward_cells = []
self.backward_cells = []
for i in range(len(dims) - 1):
input_dim = dims[i]
output_dim = dims[i + 1]
self.forward_cells.append(self.add_lstm_builder(builder, 1, input_dim, output_dim / 2))
self.backward_cells.append(self.add_lstm_builder(builder, 1, input_dim, output_dim / 2))
def __call__(self, word_embeddings):
input_tensors = word_embeddings
for layer, (forward_cell, backward_cell) in enumerate(
zip(self.forward_cells, self.backward_cells), 1):
forward_results = forward_cell.initial_state().transduce(input_tensors)
input_tensors.reverse()
backward_results = backward_cell.initial_state().transduce(input_tensors)
backward_results.reverse()
input_tensors = [dn.concatenate([forward, backward])
for forward, backward in zip(forward_results,
backward_results)]
return input_tensors
def get_layers_output(self, word_embeddings, layers):
input_tensors = word_embeddings
output_tensors = [input_tensors]
for layer, (forward_cell, backward_cell) in enumerate(
zip(self.forward_cells, self.backward_cells), 1):
forward_results = forward_cell.initial_state().transduce(input_tensors)
input_tensors.reverse()
backward_results = backward_cell.initial_state().transduce(input_tensors)
backward_results.reverse()
input_tensors = [dn.concatenate([forward, backward])
for forward, backward in zip(forward_results,
backward_results)]
output_tensors.append(input_tensors)
return [output_tensors[layer] for layer in layers]
def __getstate__(self):
return {"dims": self.dims, "params": self.params}
def set_dropout(self, dropout):
for cell in self.forward_cells + self.backward_cells:
cell.set_dropout(dropout)
def disable_dropout(self):
for cell in self.forward_cells + self.backward_cells:
cell.disable_dropout()
def restore_components(self, components):
self.forward_cells = components[0::2]
self.backward_cells = components[1::2]
class HighWayRecurrentWrapper(DynetSaveable):
def __init__(self, model, dims, highway_count, builder=dn.VanillaLSTMBuilder):
super(HighWayRecurrentWrapper, self).__init__(model)
self.dims = dims
self.birnn_layers = []
self.highway_i_factors = [None]
self.highway_o_factors = [None]
self.highway_biases = [None]
for i in range(highway_count):
self.birnn_layers.append(BiLSTM(self, dims, builder))
if i != 0:
self.highway_i_factors.append(self.add_parameters((dims[-1], dims[-1])))
self.highway_o_factors.append(self.add_parameters((dims[-1], dims[-1])))
self.highway_biases.append(self.add_parameters((dims[-1],), dn.ConstInitializer(-3.0)))
def __call__(self, word_embeddings):
highway_memories = word_embeddings
for birnn_layer, highway_i_factor, \
highway_o_factor, highway_bias in zip(self.birnn_layers,
self.highway_i_factors, self.highway_o_factors,
self.highway_biases):
output_tensors = birnn_layer(highway_memories)
if highway_memories is word_embeddings:
highway_memories = output_tensors
else:
new_highway_memories = []
for memory_vector, output_vector in zip(highway_memories, output_tensors):
highway_bias_expr = highway_bias.expr()
highway_i_factor_expr = highway_i_factor.expr()
highway_o_factor_expr = highway_o_factor.expr()
transform_rate = dn.logistic(
dn.affine_transform([highway_bias_expr, highway_i_factor_expr,
memory_vector, highway_o_factor_expr, output_vector]))
keep_rate = 1 - transform_rate
new_highway_memories.append(
dn.cmult(keep_rate, memory_vector) +
dn.cmult(transform_rate, output_vector))
highway_memories = new_highway_memories
return highway_memories
def __getstate__(self):
return {"dims": self.dims, "params": self.params}
def set_dropout(self, dropout):
for cell in self.birnn_layers:
cell.set_dropout(dropout)
def disable_dropout(self):
for cell in self.birnn_layers:
cell.disable_dropout()
def restore_components(self, components):
self.forward_cells = components[0::2]
self.backward_cells = components[1::2]
class BiLinear(DynetSaveable):
def __init__(self, model, input_dim, output_dim):
super(BiLinear, self).__init__(model)
self.output_dim = output_dim
self.input_dim = input_dim
self.w1 = self.add_parameters((output_dim, input_dim))
self.w2 = self.add_parameters((output_dim, input_dim))
self.bias = self.add_parameters(output_dim)
def __call__(self, input_1, input_2):
return self.w1.expr() * input_1 + self.w2.expr() * input_2 + self.bias.expr()
def restore_components(self, components):
self.w1, self.w2, self.bias = components
class Biaffine(object):
def __init__(self, model, input_dim, activation):
self.input_dim = input_dim
self.activation = activation
self.w1 = model.add_parameters((input_dim, input_dim))
self.w2 = model.add_parameters(input_dim)
def __call__(self, head, dep):
return head * self.w1.expr() * dep + head * self.w2.expr()
def read_embedding(embedding_filename, encoding):
if embedding_filename.endswith(".gz"):
external_embedding_fp = gzip.open(embedding_filename, 'rb')
else:
external_embedding_fp = open(embedding_filename, 'rb')
def embedding_gen():
for line in external_embedding_fp:
fields = line.decode(encoding).strip().split(' ')
if len(fields) <= 2:
continue
token = fields[0]
vector = [float(i) for i in fields[1:]]
yield token, vector
external_embedding = dict(embedding_gen())
external_embedding_fp.close()
return external_embedding
def get_external_embedding(model, embedding_filename, encoding="utf-8",
extra=("*EMPTY*", "*PAD*", "*INITIAL*")):
external_embedding = read_embedding(embedding_filename, encoding)
dim = len(next(iter(six.itervalues(external_embedding))))
extrn_dict = {word: i for i, word in enumerate(external_embedding, len(extra))}
elookup = model.add_lookup_parameters((len(external_embedding) + len(extra), dim))
for word, i in six.iteritems(extrn_dict):
embedding = external_embedding[word]
assert len(embedding) == dim
elookup.init_row(i, external_embedding[word])
for idx, word in enumerate(extra):
extrn_dict[word] = idx
return extrn_dict, elookup, dim
class EmbeddingBase(DynetSaveable):
def __call__(self, word, alternative=None, const=False):
idx = self.vocab.get(word, 0)
if idx == 0 and alternative is not None:
for word_i in alternative:
idx = self.vocab.get(word_i, 0)
if idx != 0:
break
return self.lookup[idx] if not const else dn.transpose(dn.const_parameter(self.lookup))[idx]
def restore_components(self, components):
self.lookup, = components
class Embedding(EmbeddingBase):
def __init__(self, model, vocab, dim, extra=("*EMPTY*", "*PAD*", "*INITIAL*"), init=None):
super(Embedding, self).__init__(model)
self.vocab = {word: idx for idx, word in enumerate(vocab, len(extra))}
for idx, word in enumerate(extra):
self.vocab[word] = idx
self.lookup = self.add_lookup_parameters((len(vocab) + len(extra), dim), init)
self.dim = dim
class EmbeddingFromDictionary(EmbeddingBase):
def __init__(self,
model,
dictionary, # type: Dictionary
dim, # type: int
init=None,
external_init=None,
external_encoding="utf-8"
):
super(EmbeddingFromDictionary, self).__init__(model)
self.vocab = dictionary.word_to_int
self.lookup = self.add_lookup_parameters((len(self.vocab), dim), init)
self.dim = dim
if external_init is not None:
ext_embedding = read_embedding(external_init, external_encoding)
for word, idx in self.vocab.items():
ebd = ext_embedding.get(word)
if ebd is not None:
self.lookup.init_row(idx, ebd)
class ExternalEmbedding(EmbeddingBase):
def __init__(self, model, embedding_filename, encoding="utf-8", extra=("*EMPTY*", "*PAD*", "*INITIAL*")):
super(ExternalEmbedding, self).__init__(model)
self.vocab, self.lookup, self.dim = get_external_embedding(
self, embedding_filename, encoding, extra)
class Container(DynetSaveable):
def __init__(self, model):
super(Container, self).__init__(model)
self.components = []
def __getstate__(self):
ret = super(Container, self).__getstate__()
del ret["components"]
return ret
def restore_components(self, restored_params):
self.components = restored_params
class Merge(DynetSaveable):
def __init__(self, blocks, mode=dn.esum):
super(Merge, self).__init__(model) # TODO: ???
self.blocks = blocks
self.mode = mode
def __call__(self, *args, **kwargs):
outputs = [i(*args, **kwargs) for i in self.blocks]
if isinstance(outputs[0], list):
return [self.mode(list(i)) for i in zip(*outputs)]
return self.mode(outputs)
def __getstate__(self):
return {"mode": self.mode}
def get_components(self):
return self.blocks
def restore_components(self, components):
self.blocks = components
def position_encoding_init(n_position, d_pos_vec):
''' Init the sinusoid position encoding table '''
# keep dim 0 for padding token position encoding zero vector
position_enc = np.array([
[pos / np.power(10000, 2 * i / d_pos_vec) for i in range(d_pos_vec)]
if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)])
position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i
position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1
return position_enc
def test_activation():
import matplotlib.pyplot as plt
x = np.arange(-5, 5, 0.1)
y = [selu(dn.scalarInput(i)).value() for i in x]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y)
plt.show()
if __name__ == '__main__':
test_activation()