-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedge_eval_network.py
401 lines (338 loc) · 18.7 KB
/
edge_eval_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
from __future__ import division
import random
import dynet as dn
import math
import nn
from logger import logger
from vocab_utils import Dictionary, Statistics
class SentenceEmbeddings(nn.DynetSaveable):
@classmethod
def add_parser_arguments(cls, arg_parser):
""":type arg_parser: argparse.ArgumentParser"""
group = arg_parser.add_argument_group(cls.__name__)
group.add_argument("--wembedding", type=int, dest="wembedding_dims", default=100)
group.add_argument("--pembedding", type=int, dest="pembedding_dims", default=25)
group.add_argument("--postag-dropout", type=float, dest="postag_dropout", default=0.0)
group.add_argument("--cembedding", type=int, dest="cembedding_dims", default=100)
group.add_argument("--cembedding-type", dest="cembedding_type", default="rnn", choices=["cnn", "rnn"])
group.add_argument("--cembedding-filters", dest="cembedding_filters", nargs="+", default=[3, 5, 7, 9])
group.add_argument("--supertag-embedding", type=int, dest="supertag_embedding", default=0)
group.add_argument("--supertag-dropout", type=float, dest="supertag_dropout", default=0.0)
group.add_argument("--extrn-supertag-embedding", dest="ext_supertag_embedding", metavar="FILE")
group.add_argument("--static-ext-embedding", action="store_true", dest="static_ext_embedding", default=False)
group.add_argument("--word-threshold", type=int, dest="word_threshold", default=0)
group.add_argument("--word-fallback", type=float, dest="word_fallback", default=0.0)
group.add_argument("--clstm-layers", type=int, dest="clstm_layers", default=2)
group.add_argument("--crnn-type", dest="crnn_type", choices=nn.recurrents, default="lstm")
group.add_argument("--lstmlayers", type=int, dest="lstm_layers", default=2)
group.add_argument("--label-lstm-layers", type=int, dest="label_lstm_layers", default=None)
group.add_argument("--highway-layers", type=int, dest="highway_layers", default=0)
group.add_argument("--lstmdims", type=int, dest="lstm_dims", default=125)
group.add_argument("--label-lstm-dims", type=int, dest="label_lstm_dims", default=None)
group.add_argument("--rnn-type", dest="rnn_type", choices=nn.recurrents, default="lstm")
group.add_argument("--lstm-dropout", type=float, dest="lstm_dropout", default=0.0)
group.add_argument("--extrn", dest="ext_embedding", help="External embeddings", metavar="FILE")
group.add_argument("--add-struct-score", action="store_true", dest="add_struct_score", default=False)
def __init__(self, model, statistics, options):
super(SentenceEmbeddings, self).__init__(model)
self.options = options
self.ldims = options.lstm_dims
if options.ext_embedding is not None:
self.ext_embedding = nn.ExternalEmbedding(self, options.ext_embedding)
e_dim = self.ext_embedding.dim
logger.info('Load external embedding. Vector dimensions %d', self.ext_embedding.dim)
else:
self.ext_embedding = None
e_dim = 0
self.total_dims = options.wembedding_dims + options.pembedding_dims + options.supertag_embedding + e_dim
rnn_dims = [self.total_dims] + [self.ldims * 2] * options.lstm_layers
if self.options.highway_layers <= 0:
self.rnn = nn.recurrents[options.rnn_type](self, rnn_dims)
else:
self.rnn = nn.HighWayRecurrentWrapper(self, rnn_dims,
self.options.highway_layers,
nn.recurrent_builders[options.rnn_type])
if options.label_lstm_dims is not None:
label_rnn_dims = [self.total_dims] + [options.label_lstm_dims * 2] * \
(options.label_lstm_layers or options.lstm_layers)
self.label_rnn = nn.recurrents[options.rnn_type](self, label_rnn_dims)
if options.cembedding_dims > 0 and options.word_threshold > 1:
self.char_embedding = nn.Embedding(self, list(statistics.characters), options.cembedding_dims)
if self.options.cembedding_type == "rnn":
self.c_lstm = nn.recurrents[options.crnn_type](
self, [options.cembedding_dims] + [options.wembedding_dims] * options.lstm_layers)
else:
self.c_conv_W = nn.Container(self)
cembedding_filter_count = options.wembedding_dims / len(options.cembedding_filters)
for filter_size in options.cembedding_filters:
self.c_conv_W.components.append(self.c_conv_W.add_parameters(
(filter_size, options.cembedding_dims, 1,
cembedding_filter_count)))
self.freq_words = set(word for word, count in statistics.words.items()
if count >= options.word_threshold)
logger.info("Word embedding size: {}".format(len(self.freq_words)))
self.word_embedding = nn.Embedding(self, self.freq_words, options.wembedding_dims)
else:
self.word_embedding = nn.Embedding(self, list(statistics.words), options.wembedding_dims)
if options.pembedding_dims > 0:
self.pos_embedding = nn.Embedding(self, list(statistics.postags), options.pembedding_dims)
else:
self.pos_embedding = None
if options.supertag_embedding > 0:
self.supertag_embedding = nn.EmbeddingFromDictionary(
self, statistics.supertags, options.supertag_embedding,
external_init=options.ext_supertag_embedding)
else:
self.supertag_embedding = None
self.rel_embedding = nn.Embedding(self, list(statistics.labels), options.pembedding_dims, ())
self.random = random.Random(168)
def restore_components(self, components):
if self.options.ext_embedding is not None:
self.ext_embedding = components.pop(0)
self.rnn = components.pop(0)
if getattr(self.options, "label_lstm_dims", None) is not None:
self.label_rnn = components.pop(0)
if self.options.cembedding_dims > 0 and self.options.word_threshold > 1:
self.char_embedding = components.pop(0)
self.c_lstm = components.pop(0)
self.word_embedding = components.pop(0)
if self.options.pembedding_dims > 0:
self.pos_embedding = components.pop(0)
else:
self.pos_embedding = None
if getattr(self.options, "supertag_embedding", 0) > 0:
self.supertag_embedding = components.pop(0)
else:
self.supertag_embedding = None
self.rel_embedding = components.pop(0)
assert not components
def get_vecs(self, node):
# word -> input vector of LSTM
need_word_fallback = hasattr(self, "is_train") and self.options.is_train and \
hasattr(self, "word_fallback") and \
self.options.word_fallback > 0 and \
self.random.random() < self.options.word_fallback
if not node.norm:
# empty string
word_vec = self.word_embedding("*EMPTY*")
elif self.options.cembedding_dims != 0 and self.options.word_threshold > 1 \
and (node.norm not in self.freq_words or need_word_fallback):
# use character vector
char_vecs = [self.char_embedding(i) for i in node.norm]
if getattr(self.options, "cembedding_type", "rnn") == "rnn":
char_vecs_o = self.c_lstm(char_vecs)
word_vec = (char_vecs_o[0] + char_vecs_o[-1]) / 2
else:
pad_size = max(self.options.cembedding_filters) - 1
zero = dn.zeros((self.options.cembedding_dims,))
char_vecs = [zero] * pad_size + char_vecs + [zero] * pad_size
pooled_vectors = []
conv_input = dn.transpose(dn.concatenate(char_vecs, 1))
conv_input_stacked = dn.reshape(conv_input, conv_input.dim()[0] + (1,))
cembedding_filter_count = self.options.wembedding_dims / len(self.options.cembedding_filters)
for filter_size, conv_W in zip(self.options.cembedding_filters, self.c_conv_W.components):
conv_W_expr = conv_W.expr()
conved = dn.conv2d(conv_input_stacked,
conv_W_expr,
[1, 1])
conved = dn.rectify(conved)
conved_dim = len(char_vecs) - filter_size + 1
pooled = dn.maxpooling2d(conved,
(conved_dim, 1),
(1, 1)
)
pooled_vectors.append(dn.reshape(pooled, (cembedding_filter_count,)))
word_vec = dn.concatenate(pooled_vectors)
else:
# use word vector
word_vec = self.word_embedding(node.norm)
vecs = [word_vec]
if self.options.pembedding_dims > 0:
postag_dropout = getattr(self, "postag_dropout", 0.0)
pos_vec = self.pos_embedding(node.postag)
if self.options.is_train and postag_dropout > 0:
pos_vec = dn.block_dropout(pos_vec, postag_dropout)
vecs.append(pos_vec)
if self.options.supertag_embedding > 0:
supertag_dropout = getattr(self, "supertag_dropout", 0.0)
supertag_vec = self.supertag_embedding(node.supertag)
if self.options.is_train and supertag_dropout > 0:
supertag_vec = dn.block_dropout(supertag_vec, supertag_dropout)
vecs.append(supertag_vec)
if self.ext_embedding is not None:
ext_vec = self.ext_embedding(
node.form, (node.norm,),
const=getattr(self.options, "static_ext_embedding", False))
vecs.append(ext_vec)
return dn.concatenate(vecs)
def get_lstm_output(self, sentence):
return self.rnn([self.get_vecs(i) for i in sentence])
def get_sentence_embeddings(self, sentence):
input_vecs = [self.get_vecs(i) for i in sentence]
if getattr(self.options, "label_lstm_dims", None) is None:
label_lstm_layers = getattr(self.options, "layer_lstm_layers", None) or self.options.lstm_layers
return self.rnn.get_layers_output(
input_vecs,
[self.options.lstm_layers, label_lstm_layers])
else:
struct_output = self.rnn(input_vecs)
label_output = self.label_rnn(input_vecs)
if getattr(self.options, "add_struct_score", False):
label_output += struct_output
return struct_output, label_output
class EdgeEvaluation(nn.DynetSaveable):
@classmethod
def add_parser_arguments(cls, arg_parser):
""":type arg_parser: argparse.ArgumentParser"""
group = arg_parser.add_argument_group(cls.__name__)
group.add_argument("--activation", type=str, dest="activation", default="relu")
group.add_argument("--bilinear-dim", type=int, dest="bilinear_dim", default=100)
group.add_argument("--struct-dropout", type=float, dest="struct_dropout", default=0.0)
group.add_argument("--mlp-dims", dest="mlp_dims", type=int, nargs="*",
help="MLP Layers", default=[])
def __init__(self, model, options):
super(EdgeEvaluation, self).__init__(model)
self.options = options
self.activation = nn.activations[options.activation]
self.ldims = options.lstm_dims
self.bilinear_layer = nn.BiLinear(self, self.ldims * 2, options.bilinear_dim)
dense_dims = [options.bilinear_dim] + options.mlp_dims + [1]
# don't use bias in last transform
use_bias = [True] * (len(dense_dims) - 2) + [False]
self.dense_layer = nn.DenseLayers(self, dense_dims, self.activation, use_bias)
def restore_components(self, components):
self.bilinear_layer = components.pop(0)
self.dense_layer = components.pop(0)
assert not components
def get_complete_raw_exprs(self, lstm_output):
length = len(lstm_output)
lstm_output_as_batch = dn.concatenate_to_batch(lstm_output)
headfov = self.bilinear_layer.w1.expr() * lstm_output_as_batch
modfov = self.bilinear_layer.w2.expr() * lstm_output_as_batch
# (i, j) -> (i * length + j,)
# i = k / length, j = k % length
# 1 1 2 2 3 3 4 4 ..
heads = [dn.pick_batch_elem(headfov, i) for i in range(length)]
mods = [dn.pick_batch_elem(modfov, i) for i in range(length)]
head_part = dn.concatenate_to_batch([heads[i // len(lstm_output)] for i in range(length * length)])
# 1 2 3 4 .. 1 2 3 4 ...
mod_part = dn.concatenate_to_batch([mods[i] for i in range(length)] * length)
hidden = self.activation(head_part + mod_part + self.bilinear_layer.bias.expr())
struct_dropout = getattr(self.options, "struct_dropout", 0.0)
if self.options.is_train and struct_dropout > 0:
hidden = dn.dropout(hidden, struct_dropout)
output = self.dense_layer(hidden)
return output
def raw_exprs_to_exprs(self, output, length=None):
length = length or int(math.sqrt(output.dims()[0] + 0.5))
exprs = [[dn.pick_batch_elem(output, i * length + j) for j in range(length)]
for i in range(length)]
return exprs
def raw_exprs_to_scores(self, output, length=None):
scores = output.npvalue()
length = length or int(math.sqrt(scores.shape[0] + 0.5))
scores = scores.reshape((length, length))
return scores
def get_complete_scores(self, lstm_output):
length = len(lstm_output)
output = self.get_complete_raw_exprs(lstm_output)
scores = self.raw_exprs_to_scores(output, length)
exprs = self.raw_exprs_to_exprs(output, length)
return scores, exprs
class LabelEvaluation(nn.DynetSaveable):
@classmethod
def add_parser_arguments(cls, arg_parser):
""":type arg_parser: argparse.ArgumentParser"""
group = arg_parser.add_argument_group(cls.__name__)
group.add_argument("--label-bilinear-dim", type=int, dest="label_bilinear_dim", default=100)
group.add_argument("--label-dropout", type=float, dest="label_dropout", default=0.0)
group.add_argument("--label-mlp-dims", dest="label_mlp_dims", type=int, nargs="*",
help="MLP Layers", default=[])
def __init__(self, model, statistics_or_dict, options):
super(LabelEvaluation, self).__init__(model)
self.options = options
self.activation = nn.activations[options.activation]
# for backward compatibility
if isinstance(statistics_or_dict, Dictionary):
tag_dict = statistics_or_dict
self.irels = tag_dict.int_to_word
self.rels = tag_dict.word_to_int
else:
tag_dict = statistics_or_dict.labels
self.irels = list(tag_dict)
self.rels = {v: idx for idx, v in enumerate(self.irels)}
self.ldims = options.lstm_dims
self.relation_bilinear_layer = nn.BiLinear(self, self.ldims * 2,
options.label_bilinear_dim)
relation_dense_dims = [options.label_bilinear_dim] + options.label_mlp_dims + \
[len(self.irels)]
if any(i < len(self.irels) for i in [options.label_bilinear_dim] + options.label_mlp_dims):
logger.warning("Too many labels!")
self.relation_dense_layer = nn.DenseLayers(self, relation_dense_dims,
self.activation)
def restore_components(self, components):
self.relation_bilinear_layer = components.pop(0)
self.relation_dense_layer = components.pop(0)
assert not components
def get_label_scores(self, lstm_output, edges):
"""
:type lstm_output: list[dn.Expression]
:type edges: Edge
:return:
"""
rheadfov = [None] * len(lstm_output)
rmodfov = [None] * len(lstm_output)
for source, label, target in edges:
if rheadfov[source] is None:
rheadfov[source] = self.relation_bilinear_layer.w1.expr() * lstm_output[source]
if rmodfov[target] is None:
rmodfov[target] = self.relation_bilinear_layer.w2.expr() * lstm_output[target]
hidden = self.activation(
rheadfov[source] + rmodfov[target] +
self.relation_bilinear_layer.bias.expr())
label_dropout = getattr(self.options, "label_dropout", 0.0)
if self.options.is_train and label_dropout > 0:
hidden = dn.dropout(hidden, label_dropout)
output = self.relation_dense_layer(hidden)
yield output
class EdgeEvaluationNetwork(nn.DynetSaveable):
@classmethod
def add_parser_arguments(cls, arg_parser):
""":type arg_parser: argparse.ArgumentParser"""
group = arg_parser.add_argument_group(cls.__name__)
group.add_argument("--disablelabels", action="store_false", dest="labelsFlag", default=True)
SentenceEmbeddings.add_parser_arguments(arg_parser)
EdgeEvaluation.add_parser_arguments(arg_parser)
LabelEvaluation.add_parser_arguments(arg_parser)
def __init__(self, model, statistics, options):
super(EdgeEvaluationNetwork, self).__init__(model)
self.sent_embedding = SentenceEmbeddings(self, statistics, options)
self.edge_eval = EdgeEvaluation(self, options)
self.require_labels = options.labelsFlag
if self.require_labels:
self.label_eval = LabelEvaluation(self, statistics, options)
self.rels = self.label_eval.rels
self.irels = self.label_eval.irels
else:
self.label_eval = None
def restore_components(self, components):
self.sent_embedding = components.pop(0)
self.edge_eval = components.pop(0)
if self.require_labels:
self.label_eval = components.pop(0)
else:
self.label_eval = None
assert not components
def get_vecs(self, node):
return self.sent_embedding.get_vecs(node)
def get_lstm_output(self, sentence):
return self.sent_embedding.get_lstm_output(sentence)
def get_complete_scores(self, lstm_output):
return self.edge_eval.get_complete_scores(lstm_output)
def get_label_scores(self, lstm_output, edges):
"""
:type lstm_output: list[dn.Expression]
:type edges: Edge
:return:
"""
return self.label_eval.get_label_scores(lstm_output, edges)