-
Notifications
You must be signed in to change notification settings - Fork 4.8k
/
Guid.cs
1505 lines (1276 loc) · 51.2 KB
/
Guid.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Licensed to the .NET Foundation under one or more agreements.
// The .NET Foundation licenses this file to you under the MIT license.
using System.Buffers.Binary;
using System.Diagnostics;
using System.Diagnostics.CodeAnalysis;
using System.Globalization;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.InteropServices;
using System.Runtime.Intrinsics;
using System.Runtime.Versioning;
namespace System
{
// Represents a Globally Unique Identifier.
[StructLayout(LayoutKind.Sequential)]
[Serializable]
[NonVersionable] // This only applies to field layout
[TypeForwardedFrom("mscorlib, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089")]
public readonly partial struct Guid
: ISpanFormattable,
IComparable,
IComparable<Guid>,
IEquatable<Guid>,
ISpanParsable<Guid>
{
public static readonly Guid Empty;
private readonly int _a; // Do not rename (binary serialization)
private readonly short _b; // Do not rename (binary serialization)
private readonly short _c; // Do not rename (binary serialization)
private readonly byte _d; // Do not rename (binary serialization)
private readonly byte _e; // Do not rename (binary serialization)
private readonly byte _f; // Do not rename (binary serialization)
private readonly byte _g; // Do not rename (binary serialization)
private readonly byte _h; // Do not rename (binary serialization)
private readonly byte _i; // Do not rename (binary serialization)
private readonly byte _j; // Do not rename (binary serialization)
private readonly byte _k; // Do not rename (binary serialization)
// Creates a new guid from an array of bytes.
public Guid(byte[] b) :
this(new ReadOnlySpan<byte>(b ?? throw new ArgumentNullException(nameof(b))))
{
}
// Creates a new guid from a read-only span.
public Guid(ReadOnlySpan<byte> b)
{
if (b.Length != 16)
{
throw new ArgumentException(SR.Format(SR.Arg_GuidArrayCtor, "16"), nameof(b));
}
if (BitConverter.IsLittleEndian)
{
this = MemoryMarshal.Read<Guid>(b);
return;
}
// slower path for BigEndian:
_k = b[15]; // hoist bounds checks
_a = BinaryPrimitives.ReadInt32LittleEndian(b);
_b = BinaryPrimitives.ReadInt16LittleEndian(b.Slice(4));
_c = BinaryPrimitives.ReadInt16LittleEndian(b.Slice(6));
_d = b[8];
_e = b[9];
_f = b[10];
_g = b[11];
_h = b[12];
_i = b[13];
_j = b[14];
}
[CLSCompliant(false)]
public Guid(uint a, ushort b, ushort c, byte d, byte e, byte f, byte g, byte h, byte i, byte j, byte k)
{
_a = (int)a;
_b = (short)b;
_c = (short)c;
_d = d;
_e = e;
_f = f;
_g = g;
_h = h;
_i = i;
_j = j;
_k = k;
}
// Creates a new GUID initialized to the value represented by the arguments.
public Guid(int a, short b, short c, byte[] d)
{
ArgumentNullException.ThrowIfNull(d);
if (d.Length != 8)
{
throw new ArgumentException(SR.Format(SR.Arg_GuidArrayCtor, "8"), nameof(d));
}
_a = a;
_b = b;
_c = c;
_k = d[7]; // hoist bounds checks
_d = d[0];
_e = d[1];
_f = d[2];
_g = d[3];
_h = d[4];
_i = d[5];
_j = d[6];
}
// Creates a new GUID initialized to the value represented by the
// arguments. The bytes are specified like this to avoid endianness issues.
public Guid(int a, short b, short c, byte d, byte e, byte f, byte g, byte h, byte i, byte j, byte k)
{
_a = a;
_b = b;
_c = c;
_d = d;
_e = e;
_f = f;
_g = g;
_h = h;
_i = i;
_j = j;
_k = k;
}
private enum GuidParseThrowStyle : byte
{
None = 0,
All = 1,
AllButOverflow = 2
}
// This will store the result of the parsing. And it will eventually be used to construct a Guid instance.
// We'll eventually reinterpret_cast<> a GuidResult as a Guid, so we need to give it a sequential
// layout and ensure that its early fields match the layout of Guid exactly.
[StructLayout(LayoutKind.Explicit)]
private struct GuidResult
{
[FieldOffset(0)]
internal uint _a;
[FieldOffset(4)]
internal uint _bc;
[FieldOffset(4)]
internal ushort _b;
[FieldOffset(6)]
internal ushort _c;
[FieldOffset(8)]
internal uint _defg;
[FieldOffset(8)]
internal ushort _de;
[FieldOffset(8)]
internal byte _d;
[FieldOffset(10)]
internal ushort _fg;
[FieldOffset(12)]
internal uint _hijk;
[FieldOffset(16)]
private readonly GuidParseThrowStyle _throwStyle;
internal GuidResult(GuidParseThrowStyle canThrow) : this()
{
_throwStyle = canThrow;
}
internal readonly void SetFailure(bool overflow, string failureMessageID)
{
if (_throwStyle == GuidParseThrowStyle.None)
{
return;
}
if (overflow)
{
if (_throwStyle == GuidParseThrowStyle.All)
{
throw new OverflowException(SR.GetResourceString(failureMessageID));
}
throw new FormatException(SR.Format_GuidUnrecognized);
}
throw new FormatException(SR.GetResourceString(failureMessageID));
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
public readonly Guid ToGuid()
{
return Unsafe.As<GuidResult, Guid>(ref Unsafe.AsRef(in this));
}
public void ReverseAbcEndianness()
{
_a = BinaryPrimitives.ReverseEndianness(_a);
_b = BinaryPrimitives.ReverseEndianness(_b);
_c = BinaryPrimitives.ReverseEndianness(_c);
}
}
// Creates a new guid based on the value in the string. The value is made up
// of hex digits speared by the dash ("-"). The string may begin and end with
// brackets ("{", "}").
//
// The string must be of the form dddddddd-dddd-dddd-dddd-dddddddddddd. where
// d is a hex digit. (That is 8 hex digits, followed by 4, then 4, then 4,
// then 12) such as: "CA761232-ED42-11CE-BACD-00AA0057B223"
public Guid(string g)
{
ArgumentNullException.ThrowIfNull(g);
var result = new GuidResult(GuidParseThrowStyle.All);
bool success = TryParseGuid(g, ref result);
Debug.Assert(success, "GuidParseThrowStyle.All means throw on all failures");
this = result.ToGuid();
}
public static Guid Parse(string input)
{
ArgumentNullException.ThrowIfNull(input);
return Parse((ReadOnlySpan<char>)input);
}
public static Guid Parse(ReadOnlySpan<char> input)
{
var result = new GuidResult(GuidParseThrowStyle.AllButOverflow);
bool success = TryParseGuid(input, ref result);
Debug.Assert(success, "GuidParseThrowStyle.AllButOverflow means throw on all failures");
return result.ToGuid();
}
public static bool TryParse([NotNullWhen(true)] string? input, out Guid result)
{
if (input == null)
{
result = default;
return false;
}
return TryParse((ReadOnlySpan<char>)input, out result);
}
public static bool TryParse(ReadOnlySpan<char> input, out Guid result)
{
var parseResult = new GuidResult(GuidParseThrowStyle.None);
if (TryParseGuid(input, ref parseResult))
{
result = parseResult.ToGuid();
return true;
}
else
{
result = default;
return false;
}
}
public static Guid ParseExact(string input, [StringSyntax(StringSyntaxAttribute.GuidFormat)] string format)
{
ArgumentNullException.ThrowIfNull(input);
ArgumentNullException.ThrowIfNull(format);
return ParseExact((ReadOnlySpan<char>)input, (ReadOnlySpan<char>)format);
}
public static Guid ParseExact(ReadOnlySpan<char> input, [StringSyntax(StringSyntaxAttribute.GuidFormat)] ReadOnlySpan<char> format)
{
if (format.Length != 1)
{
// all acceptable format strings are of length 1
throw new FormatException(SR.Format_InvalidGuidFormatSpecification);
}
input = input.Trim();
var result = new GuidResult(GuidParseThrowStyle.AllButOverflow);
bool success = ((char)(format[0] | 0x20)) switch
{
'd' => TryParseExactD(input, ref result),
'n' => TryParseExactN(input, ref result),
'b' => TryParseExactB(input, ref result),
'p' => TryParseExactP(input, ref result),
'x' => TryParseExactX(input, ref result),
_ => throw new FormatException(SR.Format_InvalidGuidFormatSpecification),
};
Debug.Assert(success, "GuidParseThrowStyle.AllButOverflow means throw on all failures");
return result.ToGuid();
}
public static bool TryParseExact([NotNullWhen(true)] string? input, [NotNullWhen(true), StringSyntax(StringSyntaxAttribute.GuidFormat)] string? format, out Guid result)
{
if (input == null)
{
result = default;
return false;
}
return TryParseExact((ReadOnlySpan<char>)input, format, out result);
}
public static bool TryParseExact(ReadOnlySpan<char> input, [StringSyntax(StringSyntaxAttribute.GuidFormat)] ReadOnlySpan<char> format, out Guid result)
{
if (format.Length != 1)
{
result = default;
return false;
}
input = input.Trim();
var parseResult = new GuidResult(GuidParseThrowStyle.None);
bool success = false;
switch ((char)(format[0] | 0x20))
{
case 'd':
success = TryParseExactD(input, ref parseResult);
break;
case 'n':
success = TryParseExactN(input, ref parseResult);
break;
case 'b':
success = TryParseExactB(input, ref parseResult);
break;
case 'p':
success = TryParseExactP(input, ref parseResult);
break;
case 'x':
success = TryParseExactX(input, ref parseResult);
break;
}
if (success)
{
result = parseResult.ToGuid();
return true;
}
else
{
result = default;
return false;
}
}
private static bool TryParseGuid(ReadOnlySpan<char> guidString, ref GuidResult result)
{
guidString = guidString.Trim(); // Remove whitespace from beginning and end
if (guidString.Length == 0)
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidUnrecognized));
return false;
}
return (guidString[0]) switch
{
'(' => TryParseExactP(guidString, ref result),
'{' => guidString.Contains('-') ?
TryParseExactB(guidString, ref result) :
TryParseExactX(guidString, ref result),
_ => guidString.Contains('-') ?
TryParseExactD(guidString, ref result) :
TryParseExactN(guidString, ref result),
};
}
private static bool TryParseExactB(ReadOnlySpan<char> guidString, ref GuidResult result)
{
// e.g. "{d85b1407-351d-4694-9392-03acc5870eb1}"
if (guidString.Length != 38 || guidString[0] != '{' || guidString[37] != '}')
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidInvLen));
return false;
}
return TryParseExactD(guidString.Slice(1, 36), ref result);
}
private static bool TryParseExactD(ReadOnlySpan<char> guidString, ref GuidResult result)
{
// e.g. "d85b1407-351d-4694-9392-03acc5870eb1"
if (guidString.Length != 36 || guidString[8] != '-' || guidString[13] != '-' || guidString[18] != '-' || guidString[23] != '-')
{
result.SetFailure(overflow: false, guidString.Length != 36 ? nameof(SR.Format_GuidInvLen) : nameof(SR.Format_GuidDashes));
return false;
}
Span<byte> bytes = MemoryMarshal.AsBytes(new Span<GuidResult>(ref result));
int invalidIfNegative = 0;
bytes[0] = DecodeByte(guidString[6], guidString[7], ref invalidIfNegative);
bytes[1] = DecodeByte(guidString[4], guidString[5], ref invalidIfNegative);
bytes[2] = DecodeByte(guidString[2], guidString[3], ref invalidIfNegative);
bytes[3] = DecodeByte(guidString[0], guidString[1], ref invalidIfNegative);
bytes[4] = DecodeByte(guidString[11], guidString[12], ref invalidIfNegative);
bytes[5] = DecodeByte(guidString[9], guidString[10], ref invalidIfNegative);
bytes[6] = DecodeByte(guidString[16], guidString[17], ref invalidIfNegative);
bytes[7] = DecodeByte(guidString[14], guidString[15], ref invalidIfNegative);
bytes[8] = DecodeByte(guidString[19], guidString[20], ref invalidIfNegative);
bytes[9] = DecodeByte(guidString[21], guidString[22], ref invalidIfNegative);
bytes[10] = DecodeByte(guidString[24], guidString[25], ref invalidIfNegative);
bytes[11] = DecodeByte(guidString[26], guidString[27], ref invalidIfNegative);
bytes[12] = DecodeByte(guidString[28], guidString[29], ref invalidIfNegative);
bytes[13] = DecodeByte(guidString[30], guidString[31], ref invalidIfNegative);
bytes[14] = DecodeByte(guidString[32], guidString[33], ref invalidIfNegative);
bytes[15] = DecodeByte(guidString[34], guidString[35], ref invalidIfNegative);
if (invalidIfNegative >= 0)
{
if (!BitConverter.IsLittleEndian)
{
result.ReverseAbcEndianness();
}
return true;
}
// The 'D' format has some undesirable behavior leftover from its original implementation:
// - Components may begin with "0x" and/or "+", but the expected length of each component
// needs to include those prefixes, e.g. a four digit component could be "1234" or
// "0x34" or "+0x4" or "+234", but not "0x1234" nor "+1234" nor "+0x1234".
// - "0X" is valid instead of "0x"
// We continue to support these but expect them to be incredibly rare. As such, we
// optimize for correctly formed strings where all the digits are valid hex, and only
// fall back to supporting these other forms if parsing fails.
if (guidString.IndexOfAny('X', 'x', '+') >= 0 && TryCompatParsing(guidString, ref result))
{
return true;
}
result.SetFailure(overflow: false, nameof(SR.Format_GuidInvalidChar));
return false;
static bool TryCompatParsing(ReadOnlySpan<char> guidString, ref GuidResult result)
{
if (TryParseHex(guidString.Slice(0, 8), out result._a) && // _a
TryParseHex(guidString.Slice(9, 4), out uint uintTmp)) // _b
{
result._b = (ushort)uintTmp;
if (TryParseHex(guidString.Slice(14, 4), out uintTmp)) // _c
{
result._c = (ushort)uintTmp;
if (TryParseHex(guidString.Slice(19, 4), out uintTmp)) // _d, _e
{
result._de = BitConverter.IsLittleEndian ? BinaryPrimitives.ReverseEndianness((ushort)uintTmp) : (ushort)uintTmp;
if (TryParseHex(guidString.Slice(24, 4), out uintTmp)) // _f, _g
{
result._fg = BitConverter.IsLittleEndian ? BinaryPrimitives.ReverseEndianness((ushort)uintTmp) : (ushort)uintTmp;
// Unlike the other components, this one never allowed 0x or +, so we can parse it as straight hex.
if (Number.TryParseUInt32HexNumberStyle(guidString.Slice(28, 8), NumberStyles.AllowHexSpecifier, out uintTmp) == Number.ParsingStatus.OK) // _h, _i, _j, _k
{
result._hijk = BitConverter.IsLittleEndian ? BinaryPrimitives.ReverseEndianness(uintTmp) : uintTmp;
return true;
}
}
}
}
}
return false;
}
}
private static bool TryParseExactN(ReadOnlySpan<char> guidString, ref GuidResult result)
{
// e.g. "d85b1407351d4694939203acc5870eb1"
if (guidString.Length != 32)
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidInvLen));
return false;
}
Span<byte> bytes = MemoryMarshal.AsBytes(new Span<GuidResult>(ref result));
int invalidIfNegative = 0;
bytes[0] = DecodeByte(guidString[6], guidString[7], ref invalidIfNegative);
bytes[1] = DecodeByte(guidString[4], guidString[5], ref invalidIfNegative);
bytes[2] = DecodeByte(guidString[2], guidString[3], ref invalidIfNegative);
bytes[3] = DecodeByte(guidString[0], guidString[1], ref invalidIfNegative);
bytes[4] = DecodeByte(guidString[10], guidString[11], ref invalidIfNegative);
bytes[5] = DecodeByte(guidString[8], guidString[9], ref invalidIfNegative);
bytes[6] = DecodeByte(guidString[14], guidString[15], ref invalidIfNegative);
bytes[7] = DecodeByte(guidString[12], guidString[13], ref invalidIfNegative);
bytes[8] = DecodeByte(guidString[16], guidString[17], ref invalidIfNegative);
bytes[9] = DecodeByte(guidString[18], guidString[19], ref invalidIfNegative);
bytes[10] = DecodeByte(guidString[20], guidString[21], ref invalidIfNegative);
bytes[11] = DecodeByte(guidString[22], guidString[23], ref invalidIfNegative);
bytes[12] = DecodeByte(guidString[24], guidString[25], ref invalidIfNegative);
bytes[13] = DecodeByte(guidString[26], guidString[27], ref invalidIfNegative);
bytes[14] = DecodeByte(guidString[28], guidString[29], ref invalidIfNegative);
bytes[15] = DecodeByte(guidString[30], guidString[31], ref invalidIfNegative);
if (invalidIfNegative >= 0)
{
if (!BitConverter.IsLittleEndian)
{
result.ReverseAbcEndianness();
}
return true;
}
result.SetFailure(overflow: false, nameof(SR.Format_GuidInvalidChar));
return false;
}
private static bool TryParseExactP(ReadOnlySpan<char> guidString, ref GuidResult result)
{
// e.g. "(d85b1407-351d-4694-9392-03acc5870eb1)"
if (guidString.Length != 38 || guidString[0] != '(' || guidString[37] != ')')
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidInvLen));
return false;
}
return TryParseExactD(guidString.Slice(1, 36), ref result);
}
private static bool TryParseExactX(ReadOnlySpan<char> guidString, ref GuidResult result)
{
// e.g. "{0xd85b1407,0x351d,0x4694,{0x93,0x92,0x03,0xac,0xc5,0x87,0x0e,0xb1}}"
// Compat notes due to the previous implementation's implementation details.
// - Each component need not be the full expected number of digits.
// - Each component may contain any number of leading 0s
// - The "short" components are parsed as 32-bits and only considered to overflow if they'd overflow 32 bits.
// - The "byte" components are parsed as 32-bits and are considered to overflow if they'd overflow 8 bits,
// but for the Guid ctor, whether they overflow 8 bits or 32 bits results in differing exceptions.
// - Components may begin with "0x", "0x+", even "0x+0x".
// - "0X" is valid instead of "0x"
// Eat all of the whitespace. Unlike the other forms, X allows for any amount of whitespace
// anywhere, not just at the beginning and end.
guidString = EatAllWhitespace(guidString);
// Check for leading '{'
if (guidString.Length == 0 || guidString[0] != '{')
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidBrace));
return false;
}
// Check for '0x'
if (!IsHexPrefix(guidString, 1))
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidHexPrefix));
return false;
}
// Find the end of this hex number (since it is not fixed length)
int numStart = 3;
int numLen = guidString.Slice(numStart).IndexOf(',');
if (numLen <= 0)
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidComma));
return false;
}
bool overflow = false;
if (!TryParseHex(guidString.Slice(numStart, numLen), out result._a, ref overflow) || overflow)
{
result.SetFailure(overflow, overflow ? nameof(SR.Overflow_UInt32) : nameof(SR.Format_GuidInvalidChar));
return false;
}
// Check for '0x'
if (!IsHexPrefix(guidString, numStart + numLen + 1))
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidHexPrefix));
return false;
}
// +3 to get by ',0x'
numStart = numStart + numLen + 3;
numLen = guidString.Slice(numStart).IndexOf(',');
if (numLen <= 0)
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidComma));
return false;
}
// Read in the number
if (!TryParseHex(guidString.Slice(numStart, numLen), out result._b, ref overflow) || overflow)
{
result.SetFailure(overflow, overflow ? nameof(SR.Overflow_UInt32) : nameof(SR.Format_GuidInvalidChar));
return false;
}
// Check for '0x'
if (!IsHexPrefix(guidString, numStart + numLen + 1))
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidHexPrefix));
return false;
}
// +3 to get by ',0x'
numStart = numStart + numLen + 3;
numLen = guidString.Slice(numStart).IndexOf(',');
if (numLen <= 0)
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidComma));
return false;
}
// Read in the number
if (!TryParseHex(guidString.Slice(numStart, numLen), out result._c, ref overflow) || overflow)
{
result.SetFailure(overflow, overflow ? nameof(SR.Overflow_UInt32) : nameof(SR.Format_GuidInvalidChar));
return false;
}
// Check for '{'
if ((uint)guidString.Length <= (uint)(numStart + numLen + 1) || guidString[numStart + numLen + 1] != '{')
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidBrace));
return false;
}
// Prepare for loop
numLen++;
for (int i = 0; i < 8; i++)
{
// Check for '0x'
if (!IsHexPrefix(guidString, numStart + numLen + 1))
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidHexPrefix));
return false;
}
// +3 to get by ',0x' or '{0x' for first case
numStart = numStart + numLen + 3;
// Calculate number length
if (i < 7) // first 7 cases
{
numLen = guidString.Slice(numStart).IndexOf(',');
if (numLen <= 0)
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidComma));
return false;
}
}
else // last case ends with '}', not ','
{
numLen = guidString.Slice(numStart).IndexOf('}');
if (numLen <= 0)
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidBraceAfterLastNumber));
return false;
}
}
// Read in the number
if (!TryParseHex(guidString.Slice(numStart, numLen), out uint byteVal, ref overflow) || overflow || byteVal > byte.MaxValue)
{
// The previous implementation had some odd inconsistencies, which are carried forward here.
// The byte values in the X format are treated as integers with regards to overflow, so
// a "byte" value like 0xddd in Guid's ctor results in a FormatException but 0xddddddddd results
// in OverflowException.
result.SetFailure(overflow,
overflow ? nameof(SR.Overflow_UInt32) :
byteVal > byte.MaxValue ? nameof(SR.Overflow_Byte) :
nameof(SR.Format_GuidInvalidChar));
return false;
}
Unsafe.Add(ref result._d, i) = (byte)byteVal;
}
// Check for last '}'
if (numStart + numLen + 1 >= guidString.Length || guidString[numStart + numLen + 1] != '}')
{
result.SetFailure(overflow: false, nameof(SR.Format_GuidEndBrace));
return false;
}
// Check if we have extra characters at the end
if (numStart + numLen + 1 != guidString.Length - 1)
{
result.SetFailure(overflow: false, nameof(SR.Format_ExtraJunkAtEnd));
return false;
}
return true;
}
[MethodImpl(MethodImplOptions.AggressiveInlining)]
private static byte DecodeByte(nuint ch1, nuint ch2, ref int invalidIfNegative)
{
// TODO https://github.com/dotnet/runtime/issues/13464:
// Replace the Unsafe.Add with HexConverter.FromChar once the bounds checks are eliminated.
ReadOnlySpan<byte> lookup = HexConverter.CharToHexLookup;
int h1 = -1;
if (ch1 < (nuint)lookup.Length)
{
h1 = (sbyte)Unsafe.Add(ref MemoryMarshal.GetReference(lookup), (nint)ch1);
}
h1 <<= 4;
int h2 = -1;
if (ch2 < (nuint)lookup.Length)
{
h2 = (sbyte)Unsafe.Add(ref MemoryMarshal.GetReference(lookup), (nint)ch2);
}
int result = h1 | h2;
invalidIfNegative |= result;
return (byte)result;
}
private static bool TryParseHex(ReadOnlySpan<char> guidString, out ushort result, ref bool overflow)
{
bool success = TryParseHex(guidString, out uint tmp, ref overflow);
result = (ushort)tmp;
return success;
}
private static bool TryParseHex(ReadOnlySpan<char> guidString, out uint result)
{
bool overflowIgnored = false;
return TryParseHex(guidString, out result, ref overflowIgnored);
}
private static bool TryParseHex(ReadOnlySpan<char> guidString, out uint result, ref bool overflow)
{
if (guidString.Length > 0)
{
if (guidString[0] == '+')
{
guidString = guidString.Slice(1);
}
if (guidString.Length > 1 && guidString[0] == '0' && (guidString[1] | 0x20) == 'x')
{
guidString = guidString.Slice(2);
}
}
// Skip past leading 0s.
int i = 0;
for (; i < guidString.Length && guidString[i] == '0'; i++) ;
int processedDigits = 0;
uint tmp = 0;
for (; i < guidString.Length; i++)
{
char c = guidString[i];
int numValue = HexConverter.FromChar(c);
if (numValue == 0xFF)
{
if (processedDigits > 8) overflow = true;
result = 0;
return false;
}
tmp = (tmp * 16) + (uint)numValue;
processedDigits++;
}
if (processedDigits > 8) overflow = true;
result = tmp;
return true;
}
private static ReadOnlySpan<char> EatAllWhitespace(ReadOnlySpan<char> str)
{
// Find the first whitespace character. If there is none, just return the input.
int i;
for (i = 0; i < str.Length && !char.IsWhiteSpace(str[i]); i++) ;
if (i == str.Length)
{
return str;
}
// There was at least one whitespace. Copy over everything prior to it to a new array.
var chArr = new char[str.Length];
int newLength = 0;
if (i > 0)
{
newLength = i;
str.Slice(0, i).CopyTo(chArr);
}
// Loop through the remaining chars, copying over non-whitespace.
for (; i < str.Length; i++)
{
char c = str[i];
if (!char.IsWhiteSpace(c))
{
chArr[newLength++] = c;
}
}
// Return the string with the whitespace removed.
return new ReadOnlySpan<char>(chArr, 0, newLength);
}
private static bool IsHexPrefix(ReadOnlySpan<char> str, int i) =>
i + 1 < str.Length &&
str[i] == '0' &&
(str[i + 1] | 0x20) == 'x';
// Returns an unsigned byte array containing the GUID.
public byte[] ToByteArray()
{
var g = new byte[16];
if (BitConverter.IsLittleEndian)
{
MemoryMarshal.TryWrite<Guid>(g, ref Unsafe.AsRef(in this));
}
else
{
TryWriteBytes(g);
}
return g;
}
// Returns whether bytes are successfully written to given span.
public bool TryWriteBytes(Span<byte> destination)
{
if (BitConverter.IsLittleEndian)
{
return MemoryMarshal.TryWrite(destination, ref Unsafe.AsRef(in this));
}
// slower path for BigEndian
if (destination.Length < 16)
return false;
destination[15] = _k; // hoist bounds checks
BinaryPrimitives.WriteInt32LittleEndian(destination, _a);
BinaryPrimitives.WriteInt16LittleEndian(destination.Slice(4), _b);
BinaryPrimitives.WriteInt16LittleEndian(destination.Slice(6), _c);
destination[8] = _d;
destination[9] = _e;
destination[10] = _f;
destination[11] = _g;
destination[12] = _h;
destination[13] = _i;
destination[14] = _j;
return true;
}
// Returns the guid in "registry" format.
public override string ToString() => ToString("D", null);
public override int GetHashCode()
{
// Simply XOR all the bits of the GUID 32 bits at a time.
ref int r = ref Unsafe.AsRef(in _a);
return r ^ Unsafe.Add(ref r, 1) ^ Unsafe.Add(ref r, 2) ^ Unsafe.Add(ref r, 3);
}
// Returns true if and only if the guid represented
// by o is the same as this instance.
public override bool Equals([NotNullWhen(true)] object? o) => o is Guid g && EqualsCore(this, g);
public bool Equals(Guid g) => EqualsCore(this, g);
private static bool EqualsCore(in Guid left, in Guid right)
{
if (Vector128.IsHardwareAccelerated)
{
return Vector128.LoadUnsafe(ref Unsafe.As<Guid, byte>(ref Unsafe.AsRef(in left))) == Vector128.LoadUnsafe(ref Unsafe.As<Guid, byte>(ref Unsafe.AsRef(in right)));
}
ref int rA = ref Unsafe.AsRef(in left._a);
ref int rB = ref Unsafe.AsRef(in right._a);
// Compare each element
return rA == rB
&& Unsafe.Add(ref rA, 1) == Unsafe.Add(ref rB, 1)
&& Unsafe.Add(ref rA, 2) == Unsafe.Add(ref rB, 2)
&& Unsafe.Add(ref rA, 3) == Unsafe.Add(ref rB, 3);
}
private static int GetResult(uint me, uint them) => me < them ? -1 : 1;
public int CompareTo(object? value)
{
if (value == null)
{
return 1;
}
if (!(value is Guid))
{
throw new ArgumentException(SR.Arg_MustBeGuid, nameof(value));
}
Guid g = (Guid)value;
if (g._a != _a)
{
return GetResult((uint)_a, (uint)g._a);
}
if (g._b != _b)
{
return GetResult((uint)_b, (uint)g._b);
}
if (g._c != _c)
{
return GetResult((uint)_c, (uint)g._c);
}
if (g._d != _d)
{
return GetResult(_d, g._d);
}
if (g._e != _e)
{
return GetResult(_e, g._e);
}
if (g._f != _f)
{
return GetResult(_f, g._f);
}
if (g._g != _g)
{
return GetResult(_g, g._g);
}
if (g._h != _h)
{
return GetResult(_h, g._h);
}
if (g._i != _i)
{
return GetResult(_i, g._i);
}
if (g._j != _j)
{
return GetResult(_j, g._j);
}
if (g._k != _k)
{
return GetResult(_k, g._k);
}
return 0;
}
public int CompareTo(Guid value)
{
if (value._a != _a)
{
return GetResult((uint)_a, (uint)value._a);
}
if (value._b != _b)
{
return GetResult((uint)_b, (uint)value._b);
}
if (value._c != _c)
{
return GetResult((uint)_c, (uint)value._c);
}
if (value._d != _d)
{
return GetResult(_d, value._d);
}
if (value._e != _e)
{
return GetResult(_e, value._e);
}
if (value._f != _f)
{
return GetResult(_f, value._f);
}
if (value._g != _g)
{
return GetResult(_g, value._g);
}
if (value._h != _h)
{
return GetResult(_h, value._h);