Incremental generators are a new API that exists alongside source generators to allow users to specify generation strategies that can be applied in a high performance way by the hosting layer.
- Allow for a finer grained approach to defining a generator
- Scale source generators to support 'Roslyn/CoreCLR' scale projects in Visual Studio
- Exploit caching between fine grained steps to reduce duplicate work
- Support generating more items that just source texts
- Exist alongside
ISourceGenerator
based implementations
We begin by defining a simple incremental generator that extracts the contents
of additional text files and makes their contents available as compile time
const
s. In the following section we'll go into more depth around the concepts
shown.
[Generator]
public class Generator : IIncrementalGenerator
{
public void Initialize(IncrementalGeneratorInitializationContext initContext)
{
// define the execution pipeline here via a series of transformations:
// find all additional files that end with .txt
IncrementalValuesProvider<AdditionalText> textFiles = initContext.AdditionalTextsProvider.Where(static file => file.Path.EndsWith(".txt"));
// read their contents and save their name
IncrementalValuesProvider<(string name, string content)> namesAndContents = textFiles.Select((text, cancellationToken) => (name: Path.GetFileNameWithoutExtension(text.Path), content: text.GetText(cancellationToken)!.ToString()));
// generate a class that contains their values as const strings
initContext.RegisterSourceOutput(namesAndContents, (spc, nameAndContent) =>
{
spc.AddSource($"ConstStrings.{nameAndContent.name}", $@"
public static partial class ConstStrings
{{
public const string {nameAndContent.name} = ""{nameAndContent.content}"";
}}");
});
}
}
An incremental generator is an implementation of Microsoft.CodeAnalysis.IIncrementalGenerator
.
namespace Microsoft.CodeAnalysis
{
public interface IIncrementalGenerator
{
void Initialize(IncrementalGeneratorInitializationContext initContext);
}
}
As with source generators, incremental generators are defined in external
assemblies and passed to the compiler via the -analyzer:
option.
Implementations are required to be annotated with the
Microsoft.CodeAnalysis.GeneratorAttribute
with an optional parameter
indicating the languages the generator supports:
[Generator(LanguageNames.CSharp)]
public class MyGenerator : IIncrementalGenerator { ... }
An assembly can contain a mix of diagnostic analyzers, source generators and incremental generators.
IIncrementalGenerator
has an Initialize
method that is called by the
host1 exactly once, regardless of the number of further compilations that may
occur. For instance a host with multiple loaded projects may share the same
generator instance across multiple projects, and will only call Initialize
a
single time for the lifetime of the host.
Rather than a dedicated Execute
method, an Incremental Generator instead
defines an immutable execution pipeline as part of initialization. The
Initialize
method receives an instance of
IncrementalGeneratorInitializationContext
which is used by the generator to
define a set of transformations.
public void Initialize(IncrementalGeneratorInitializationContext initContext)
{
// define the execution pipeline here via a series of transformations:
}
The defined transformations are not executed directly at initialization, and instead are deferred until the data they are using changes. Conceptually this is similar to LINQ, where a lambda expression might not be executed until the enumerable is actually iterated over:
IEnumerable:
var squares = Enumerable.Range(1, 10).Select(i => i * 2);
// the code inside select is not executed until we iterate the collection
foreach (var square in squares) { ... }
These transformations are used to form a directed graph of actions that can be executed on demand later, as the input data changes.
Incremental Generators:
IncrementalValuesProvider<AdditionalText> textFiles = context.AdditionalTextsProvider.Where(static file => file.Path.EndsWith(".txt"));
// the code in the Where(...) above will not be executed until the value of the additional texts actually changes
Between each transformation, the data produced is cached, allowing previously calculated values to be re-used where applicable. This caching reduces the computation required for subsequent compilations. See caching for more details.
Input data is available to the pipeline in the form of opaque data sources,
either an IncrementalValueProvider<T>
or IncrementalValuesProvider<T>
(note
the plural values) where T is the type of input data that is provided.
An initial set of providers are created by the host, and can be accessed from the
IncrementalGeneratorInitializationContext
provided during initialization.
The currently available providers are:
- CompilationProvider
- AdditionalTextsProvider
- AnalyzerConfigOptionsProvider
- MetadataReferencesProvider
- ParseOptionsProvider
Note: there is no provider for accessing syntax nodes. This is handled in a slightly different way. See SyntaxValueProvider for details.
A value provider can be thought of as a 'box' that holds the value itself. An execution pipeline does not access the values in a value provider directly.
IValueProvider<TSource>
┌─────────────┐
| |
│ TSource │
| |
└─────────────┘
Instead, the generator supplies a set of transformations that are to be applied to the data contained within the provider, which in turn creates a new value provider.
The simplest transformation is Select
. This maps the value in one provider
into a new provider by applying a transform to it.
IValueProvider<TSource> IValueProvider<TResult>
┌─────────────┐ ┌─────────────┐
│ │ Select<TSource,TResult> │ │
│ TSource ├──────────────────────────►│ TResult │
│ │ │ │
└─────────────┘ └─────────────┘
Generator transformations can be thought of as being conceptually somewhat similar to
LINQ, with the value provider taking the place of IEnumerable<T>
.
Transforms are created through a set of extension methods:
public static partial class IncrementalValueSourceExtensions
{
// 1 => 1 transform
public static IncrementalValueProvider<TResult> Select<TSource, TResult>(this IncrementalValueProvider<TSource> source, Func<TSource, CancellationToken, TResult> selector);
public static IncrementalValuesProvider<TResult> Select<TSource, TResult>(this IncrementalValuesProvider<TSource> source, Func<TSource, CancellationToken, TResult> selector);
}
Note how the return type of these methods are also an instance of
IncrementalValue[s]Provider
. This allows the generator to chain multiple
transformations together:
IValueProvider<TSource> IValueProvider<TResult1> IValueProvider<TResult2>
┌─────────────┐ ┌─────────────┐ ┌─────────────┐
│ │ Select<TSource,TResult1> │ │ Select<TResult1,TResult2> │ │
│ TSource ├───────────────────────────►│ TResult1 │──────────────────────────►│ TResult2 │
│ │ │ │ │ │
└─────────────┘ └─────────────┘ └─────────────┘
Consider the following simple example:
// get the additional text provider
IncrementalValuesProvider<AdditionalText> additionalTexts = initContext.AdditionalTextsProvider;
// apply a 1-to-1 transform on each text, which represents extracting the path
IncrementalValuesProvider<string> transformed = additionalTexts.Select(static (text, _) => text.Path);
// transform each extracted path into something else
IncrementalValuesProvider<string> prefixTransform = transformed.Select(static (path, _) => "prefix_" + path);
Note how transformed
and prefixTransform
are themselves an
IncrementalValuesProvider
. They represent the outcome of the transformation
that will be applied, rather than the resulting data.
An IncrementalValueProvider<T>
will always provide a single value, whereas an
IncrementalValuesProvider<T>
may provide zero or more values. For example the
CompilationProvider
will always produce a single compilation instance, whereas
the AdditionalTextsProvider
will produce a variable number of values,
depending on how many additional texts where passed to the compiler.
Conceptually it is simple to think about the transformation of a single item
from an IncrementalValueProvider<T>
: the single item has the selector function
applied to it which produces a single value of TResult
.
For an IncrementalValuesProvider<T>
however, this transformation is more
subtle. The selector function is applied multiple times, one to each item in the
values provider. The results of each transformation are then used to create the
values for the resulting values provider:
Select<TSource, TResult>
.......................................
. ┌───────────┐ .
. selector(Item1) │ │ .
. ┌────────────────►│ Result1 ├───┐ .
. │ │ │ │ .
IncrementalValuesProvider<TSource> . │ └───────────┘ │ . IncrementalValuesProvider<TResult>
┌───────────┐ . │ ┌───────────┐ │ . ┌────────────┐
│ │ . │ selector(Item2) │ │ │ . │ │
│ TSource ├──────────────┼────────────────►│ Result2 ├───┼─────────►│ TResult │
│ │ . │ │ │ │ . │ │
└───────────┘ . │ └───────────┘ │ . └────────────┘
3 items . │ ┌───────────┐ │ . 3 items
[Item1, Item2, Item3] . │ selector(Item3) │ │ │ . [Result1, Result2, Result3]
. └────────────────►│ Result3 ├───┘ .
. │ │ .
. └───────────┘ .
.......................................
It is this item-wise transformation that allows the caching to be particularly
powerful in this model. Consider when the values inside
IncrementalValueProvider<TSource>
change. Its likely that any given change
will only change one item at a time rather than the whole collection (for example
a user typing in an additional text only changes the given text, leaving the
other additional texts unmodified).
When this occurs the generator driver can compare the input items with the ones that were used previously. If they are considered to be equal then the transformations for those items can be skipped and the previously computed versions used instead. See Comparing Items for more details.
In the above diagram if Item2
were to change we would execute the selector on
the modified value producing a new value for Result2
. As Item1
and Item3
are unchanged the driver is free to skip executing the selector and just use the
cached values of Result1
and Result3
from the previous execution.
In addition to the 1-to-1 transform shown above, there are also transformations
that produce batches of data. For instance a given transformation may want to
produce multiple values for each input. There are a set of SelectMany
methods that allow a transformation of 1 to
many, or many to many items:
1 to many:
public static partial class IncrementalValueSourceExtensions
{
public static IncrementalValuesProvider<TResult> SelectMany<TSource, TResult>(this IncrementalValueProvider<TSource> source, Func<TSource, CancellationToken, IEnumerable<TResult>> selector);
}
SelectMany<TSource, TResult>
.......................................
. ┌───────────┐ .
. │ │ .
. ┌──►│ Result1 ├───┐ .
. │ │ │ │ .
IncrementalValueProvider<TSource> . │ └───────────┘ │ . IncrementalValuesProvider<TResult>
┌───────────┐ . │ ┌───────────┐ │ . ┌────────────┐
│ │ . selector(Item)│ │ │ │ . │ │
│ TSource ├────────────────────────────┼──►│ Result2 ├───┼─────────►│ TResult │
│ │ . │ │ │ │ . │ │
└───────────┘ . │ └───────────┘ │ . └────────────┘
Item . │ ┌───────────┐ │ . 3 items
. │ │ │ │ . [Result1, Result2, Result3]
. └──►│ Result3 ├───┘ .
. │ │ .
. └───────────┘ .
.......................................
Many to many:
public static partial class IncrementalValueSourceExtensions
{
public static IncrementalValuesProvider<TResult> SelectMany<TSource, TResult>(this IncrementalValuesProvider<TSource> source, Func<TSource, CancellationToken, IEnumerable<TResult>> selector);
}
SelectMany<TSource, TResult>
...............................................
. ┌─────────┐ .
. │ │ .
. ┌────►│ Result1 ├───────┐ .
. │ │ │ │ .
. │ └─────────┘ │ .
. selector(Item1) │ │ .
.┌─────────────────┘ ┌─────────┐ │ .
.│ │ │ │ .
IncrementalValuesProvider<TSource>.│ ┌────►│ Result2 ├───────┤ . IncrementalValuesProvider<TResult>
┌───────────┐ .│ │ │ │ │ . ┌────────────┐
│ │ .│ selector(Item2) │ └─────────┘ │ . │ │
│ TSource ├─────────────┼─────────────────┤ ┌─────────┐ ├──────────────►│ TResult │
│ │ .│ │ │ │ │ . │ │
└───────────┘ .│ └────►│ Result3 ├───────┤ . └────────────┘
3 items .│ │ │ │ . 7 items
[Item1, Item2, Item3] .│ selector(Item3) └─────────┘ │ . [Result1, Result2, Result3, Result4,
.└─────────────────┐ │ . Result5, Result6, Result7 ]
. │ ┌─────────┐ │ .
. │ │ │ │ .
. ├────►│ Result4 ├───────┤ .
. │ │ │ │ .
. │ └─────────┘ │ .
. │ ┌─────────┐ │ .
. │ │ │ │ .
. ├────►│ Result5 ├───────┤ .
. │ │ │ │ .
. │ └─────────┘ │ .
. │ ┌─────────┐ │ .
. │ │ │ │ .
. └────►│ Result6 ├───────┘ .
. │ │ .
. └─────────┘ .
...............................................
For example, consider a set of additional XML files that contain multiple elements of the same type. The generator may want to treat each element as a distinct item for generation, effectively splitting a single additional file into multiple sub-items.
// get the additional text provider
IncrementalValuesProvider<AdditionalText> additionalTexts = initContext.AdditionalTextsProvider;
// extract each element from each additional file
IncrementalValuesProvider<MyElementType> elements = additionalTexts.SelectMany(static (text, _) => /*transform text into an array of MyElementType*/);
// now the generator can consider the union of elements in all additional texts, without needing to consider multiple files
IncrementalValuesProvider<string> transformed = elements.Select(static (element, _) => /*transform the individual element*/);
Where allows the author to filter the values in a value provider by a given predicate. Where is actually a specific form of select many, where each input transforms to exactly 1 or 0 outputs. However, as it is such a common operation it is provided as a primitive transformation directly.
public static partial class IncrementalValueSourceExtensions
{
public static IncrementalValuesProvider<TSource> Where<TSource>(this IncrementalValuesProvider<TSource> source, Func<TSource, bool> predicate);
}
Select<TSource, TResult>
.......................................
. ┌───────────┐ .
. predicate(Item1)│ │ .
. ┌────────────────►│ Item1 ├───┐ .
. │ │ │ │ .
IncrementalValuesProvider<TSource> . │ └───────────┘ │ . IncrementalValuesProvider<TResult>
┌───────────┐ . │ │ . ┌────────────┐
│ │ . │ predicate(Item2) │ . │ │
│ TSource ├──────────────┼─────────────────X ├─────────►│ TResult │
│ │ . │ │ . │ │
└───────────┘ . │ │ . └────────────┘
3 Items . │ ┌───────────┐ │ . 2 Items
. │ predicate(Item3)│ │ │ .
. └────────────────►│ Item3 ├───┘ .
. │ │ .
. └───────────┘ .
.......................................
An obvious use case is to filter out inputs the generator knows it isn't interested in. For example, the generator will likely want to filter additional texts on file extensions:
// get the additional text provider
IncrementalValuesProvider<AdditionalText> additionalTexts = initContext.AdditionalTextsProvider;
// filter additional texts by extension
IncrementalValuesProvider<string> xmlFiles = additionalTexts.Where(static (text, _) => text.Path.EndsWith(".xml", StringComparison.OrdinalIgnoreCase));
When performing transformations on a value provider with multiple items, it can
often be useful to view the items as a single collection rather than one item at
a time. For this there is the Collect
transformation.
Collect
transforms an IncrementalValuesProvider<T>
to an
IncrementalValueProvider<ImmutableArray<T>>
. Essentially it transforms a multi-valued source
into a single value source with an array of all the items.
public static partial class IncrementalValueSourceExtensions
{
IncrementalValueProvider<ImmutableArray<TSource>> Collect<TSource>(this IncrementalValuesProvider<TSource> source);
}
IncrementalValuesProvider<TSource> IncrementalValueProvider<ImmutableArray<TSource>>
┌───────────┐ ┌─────────────────────────┐
│ │ Collect<TSource> │ │
│ TSource ├─────────────────────────────────►│ ImmutableArray<TSource> │
│ │ │ │
└───────────┘ └─────────────────────────┘
3 Items Single Item
Item1 [Item1, Item2, Item3]
Item2
Item3
// get the additional text provider
IncrementalValuesProvider<AdditionalText> additionalTexts = initContext.AdditionalTextsProvider;
// collect the additional texts into a single item
IncrementalValueProvider<AdditionalText[]> collected = additionalTexts.Collect();
// perform a transformation where you can access all texts at once
var transform = collected.Select(static (texts, _) => /* ... */);
The transformations described so far are all effectively single-path operations: while there may be multiple items in a given provider, each transformation operates on a single input value provider and produce a single derived output provider.
While sufficient for simple operations, it is often necessary to combine the values from multiple input providers or use the results of a transformation multiple times. For this there are a set of transformations that split and combine a single path of transformations into a multi-path pipeline.
It is possible to split the output of a transformations into multiple parallel inputs. Rather than having a dedicated transformation this can be achieved by simply using the same value provider as the input to multiple transforms.
IncrementalValueProvider<TResult>
┌───────────┐
Select<TSource,TResult> │ │
IncrementalValueProvider<TSource> ┌───────────────────────►│ TResult │
┌───────────┐ │ │ │
│ │ │ └───────────┘
│ TSource ├─────────────┤
│ │ │
└───────────┘ │ IncrementalValuesProvider<TResult2>
│ ┌───────────┐
│ SelectMany<TSource,TResult2> │ │
└─────────────────────────────►│ TResult2 │
│ │
└───────────┘
Those transforms can then be used as the inputs to new single path transforms, independent of one another.
For example:
// get the additional text provider
IncrementalValuesProvider<AdditionalText> additionalTexts = context.AdditionalTextsProvider;
// apply a 1-to-1 transform on each text, extracting the path
IncrementalValuesProvider<string> transformed = additionalTexts.Select(static (text, _) => text.Path);
// split the processing into two paths of derived data
IncrementalValuesProvider<string> nameTransform = transformed.Select(static (path, _) => "prefix_" + path);
IncrementalValuesProvider<string> extensionTransform = transformed.Select(static (path, _) => Path.ChangeExtension(path, ".new"));
nameTransform
and extensionTransform
produce different values for the same
set of additional text inputs. For example if there was an additional file
called file.txt
then nameTransform
would produce the string
prefix_file.txt
where extensionTransform
would produce the string
file.new
.
When the value of the additional file changes, the subsequent values produced
may or may not differ. For example if the name of the additional file was
changed to file.xml
then nameTransform
would now produce prefix_file.xml
whereas extensionTransform
would still produce file.new
. Any child transform
with input from nameTransform
would be re-run with the new value, but any
child of extensionTransform
would use the previously cached version as it's
input hasn't changed.
Combine is the most powerful, but also most complicated transformation. It allows a generator to take two input providers and create a single unified output provider.
Single-value to single-value:
public static partial class IncrementalValueSourceExtensions
{
IncrementalValueProvider<(TLeft Left, TRight Right)> Combine<TLeft, TRight>(this IncrementalValueProvider<TLeft> provider1, IncrementalValueProvider<TRight> provider2);
}
When combining two single value providers, the resulting node is conceptually
easy to understand: a new value provider that contains a Tuple
of the two
input items.
IncrementalValueProvider<TSource1>
┌───────────┐
│ │
│ TSource1 ├────────────────┐
│ │ │ IncrementalValueProvider<(TSource1, TSource2)>
└───────────┘ │
Single Item │ ┌────────────────────────┐
│ Combine<TSource1, TSource2> │ │
Item1 ├─────────────────────────────────────────►│ (TSource1, TSource2) │
│ │ │
IncrementalValueProvider<TSource2> │ └────────────────────────┘
┌───────────┐ │ Single Item
│ │ │
│ TSource2 ├────────────────┘ (Item1, Item2)
│ │
└───────────┘
Single Item
Item2
Multi-value to single-value:
public static partial class IncrementalValueSourceExtensions
{
IncrementalValuesProvider<(TLeft Left, TRight Right)> Combine<TLeft, TRight>(this IncrementalValuesProvider<TLeft> provider1, IncrementalValueProvider<TRight> provider2);
}
When combining a multi value provider to a single value provider, however, the semantics are a little more complicated. The resulting multi-valued provider produces a series of tuples: the left hand side of each tuple is the value produced from the multi-value input, while the right hand side is always the same single value from the single value provider input.
IncrementalValuesProvider<TSource1>
┌───────────┐
│ │
│ TSource1 ├────────────────┐
│ │ │
└───────────┘ │
3 Items │ IncrementalValuesProvider<(TSource1, TSource2)>
│
LeftItem1 │ ┌────────────────────────┐
LeftItem2 │ Combine<TSource1, TSource2> │ │
LeftItem3 ├─────────────────────────────────────────►│ (TSource1, TSource2) │
│ │ │
│ └────────────────────────┘
IncrementalValueProvider<TSource2> │ 3 Items
┌───────────┐ │
│ │ │ (LeftItem1, RightItem)
│ TSource2 ├────────────────┘ (LeftItem2, RightItem)
│ │ (LeftItem3, RightItem)
└───────────┘
Single Item
RightItem
Multi-value to multi-value:
As shown by the definitions above it is not possible to combine a multi-value source to another multi-value source. The resulting cross join would potentially contain a large number of values, so the operation is not provided by default.
Instead, an author can call Collect()
on one of the input multi-value providers
to produce a single-value provider that can be combined as above.
IncrementalValuesProvider<TSource1>
┌───────────┐
│ │
│ TSource1 ├──────────────┐
│ │ │
└───────────┘ │
3 Items │ IncrementalValuesProvider<(TSource1, TSource2[])>
│
LeftItem1 │ ┌────────────────────────┐
LeftItem2 │ Combine<TSource1, TSource2[]> │ │
LeftItem3 ├─────────────────────────────────────────►│ (TSource1, TSource2) │
│ │ │
│ └────────────────────────┘
IncrementalValuesProvider<TSource2> IncrementalValueProvider<TSource2[]> │ 3 Items
┌───────────┐ ┌────────────┐ │
│ │ Collect<TSource2> │ │ │ (LeftItem1, [RightItem1, RightItem2, RightItem3])
│ TSource2 ├───────────────────────────┤ TSource2[] ├──────────────┘ (LeftItem2, [RightItem1, RightItem2, RightItem3])
│ │ │ │ (LeftItem3, [RightItem1, RightItem2, RightItem3])
└───────────┘ └────────────┘
3 Items Single Item
RightItem1 [RightItem1, RightItem2, RightItem3]
RightItem2
RightItem3
With the above transformations the generator author can now take one or more inputs and combine them into a single source of data. For example:
// get the additional text provider
IncrementalValuesProvider<AdditionalText> additionalTexts = initContext.AdditionalTextsProvider;
// combine each additional text with the parse options
IncrementalValuesProvider<(AdditionalText, ParseOptions)> combined = initContext.AdditionalTextsProvider.Combine(initContext.ParseOptionsProvider);
// perform a transform on each text, with access to the options
var transformed = combined.Select(static (pair, _) =>
{
AdditionalText text = pair.Left;
ParseOptions parseOptions = pair.Right;
// do the actual transform ...
});
If either of the inputs to a combine change, then subsequent transformation will re-run. However, the caching is considered on a pairwise basis for each output tuple. For instance, in the above example, if only additional text changes the subsequent transform will only be run for the text that changed. The other text and parse options pairs are skipped and their previously computed value are used. If the single value changes, such as the parse options in the example, then the transformation is executed for every tuple.
Syntax Nodes are not available directly through a value provider. Instead, a
generator author uses the special SyntaxValueProvider
(provided via the
IncrementalGeneratorInitializationContext.SyntaxProvider
) to create a
dedicated input node that instead exposes a sub-set of the syntax they are
interested in. The syntax provider is specialized in this way to achieve a
desired level of performance.
CreateSyntaxProvider:
Currently the provider exposes a single method CreateSyntaxProvider
that
allows the author to construct an input node.
public readonly struct SyntaxValueProvider
{
public IncrementalValuesProvider<T> CreateSyntaxProvider<T>(Func<SyntaxNode, CancellationToken, bool> predicate, Func<GeneratorSyntaxContext, CancellationToken, T> transform);
}
Note how this takes two lambda parameters: one that examines a SyntaxNode
in
isolation, and a second one that can then use the GeneratorSyntaxContext
to
access a semantic model and transform the node for downstream usage.
It is because of this split that performance can be achieved: as the driver is
aware of which nodes are chosen for examination, it can safely skip the first
predicate
lambda when a syntax tree remains unchanged. The driver will still
re-run the second transform
lambda even for nodes in unchanged files, as a
change in one file can impact the semantic meaning of a node in another file.
Consider the following syntax trees:
// file1.cs
public class Class1
{
public int Method1() => 0;
}
// file2.cs
public class Class2
{
public Class1 Method2() => null;
}
// file3.cs
public class Class3 {}
As an author I can make an input node that extracts the return type information
// create a syntax provider that extracts the return type kind of method symbols
var returnKinds = initContext.SyntaxProvider.CreateSyntaxProvider(static (n, _) => n is MethodDeclarationSyntax,
static (n, _) => ((IMethodSymbol)n.SemanticModel.GetDeclaredSymbol(n.Node)).ReturnType.Kind);
Initially the predicate
will run for all syntax nodes, and select the two
MethodDeclarationSyntax
nodes Method1()
and Method2()
. These are then
passed to the transform
where the semantic model is used to obtain the method
symbol and extract the kind of the return type for the method. returnKinds
will contain two values, both NamedType
.
Now imagine that file3.cs
is edited:
// file3.cs
public class Class3 {
public int field;
}
The predicate
will only be run for syntax nodes inside file3.cs
, and will
not return any as it still doesn't contain any method symbols. The transform
however will still be run again for the two methods from Class1
and Class2
.
To see why it was necessary to re-run the transform
consider the following
edit to file1.cs
where we change the classes name:
// file1.cs
public class Class4
{
public int Method1() => 0;
}
The predicate
will be re-run for file1.cs
as it has changed, and will pick
out the method symbol Method1()
again. Next, because the transform
is
re-run for all the methods, the return type kind for Method2()
is correctly
changed to Error
as Class1
no longer exists.
Note that we didn't need to run the predicate
over for nodes in file2.cs
even though they referenced something in file1.cs
. Because the first check is
purely syntactic we can be sure the results for file2.cs
would be the same.
While it may seem unfortunate that the driver must run the transform
for all
selected syntax nodes, if it did not it could end up producing incorrect data
due to cross file dependencies. Because the initial syntactic check
allows the driver to substantially filter the number of nodes on which the
semantic checks have to be re-run, significantly improved performance
characteristics are still observed when editing a syntax tree.
At some point in the pipeline the author will want to actually use the
transformed data to produce an output, such as a SourceText
. There are a set
of Register...Output
methods on the
IncrementalGeneratorInitializationContext
that allow the generator author to
construct an output from a series of transformations.
These output registrations are terminal, in that the they do not return a value provider and can have no further transformations applied to them. However an author is free to register multiple outputs of the same type with different input transformations.
The set of output methods are
- RegisterSourceOutput
- RegisterImplementationSourceOutput
- RegisterPostInitializationOutput
RegisterSourceOutput:
RegisterSourceOutput
allows a generator author to produce source files and
diagnostics that will be included in the users compilation. As input, it takes a
Value[s]Provider
and an Action<SourceProductionContext, TSource>
that will
be invoked for every value in the value provider.
public static partial class IncrementalValueSourceExtensions
{
public void RegisterSourceOutput<TSource>(IncrementalValueProvider<TSource> source, Action<SourceProductionContext, TSource> action);
public void RegisterSourceOutput<TSource>(IncrementalValuesProvider<TSource> source, Action<SourceProductionContext, TSource> action);
}
The provided SourceProductionContext
can be used to add source files and report diagnostics:
public readonly struct SourceProductionContext
{
public CancellationToken CancellationToken { get; }
public void AddSource(string hintName, string source);
public void ReportDiagnostic(Diagnostic diagnostic);
}
For example, a generator can extract out the set of paths for the additional files and create a method that prints them out:
// get the additional text provider
IncrementalValuesProvider<AdditionalText> additionalTexts = initContext.AdditionalTextsProvider;
// apply a 1-to-1 transform on each text, extracting the path
IncrementalValuesProvider<string> transformed = additionalTexts.Select(static (text, _) => text.Path);
// collect the paths into a batch
IncrementalValueProvider<ImmutableArray<string>> collected = transformed.Collect();
// take the file paths from the above batch and make some user visible syntax
initContext.RegisterSourceOutput(collected, static (sourceProductionContext, filePaths) =>
{
sourceProductionContext.AddSource("additionalFiles.cs", @"
namespace Generated
{
public class AdditionalTextList
{
public static void PrintTexts()
{
System.Console.WriteLine(""Additional Texts were: " + string.Join(", ", filePaths) + @" "");
}
}
}");
});
RegisterImplementationSourceOutput:
RegisterImplementationSourceOutput
works in the same way as
RegisterSourceOutput
but declares that the source produced has no semantic
impact on user code from the point of view of code analysis. This allows a host
such as the IDE, to chose not to run these outputs as a performance
optimization. A host that produces executable code will always run these
outputs.
RegisterPostInitializationOutput:
RegisterPostInitializationOutput
allows a generator author to provide source
code immediately after initialization has run. It takes no inputs, and so cannot
refer to any source code written by the user, or any other compiler inputs.
Post initialization source is included in the Compilation before any other transformations are run, meaning that it will be visible as part of the rest of the regular execution pipeline, and an author may ask semantic questions about it.
It is particularly useful for adding attribute definitions to the users' source code. These can then be applied by the user in their code, and the generator may find the attributed code via the semantic model.
Incremental generators are designed to be used in interactive hosts such as an IDE. As such, it is critically important that generators respect and respond to the passed-in cancellation tokens.
In general, it is likely that the amount of user computation performed per transformation is low, but often will be calling into Roslyn APIs that may have a significant performance impact. As such the author should always forward the provided cancellation token to any Roslyn APIs that accept it.
For example, when retrieving the contents of an additional file, the token
should be passed into GetText(...)
:
public void Initialize(IncrementalGeneratorInitializationContext context)
{
var txtFiles = context.AdditionalTextsProvider.Where(static f => f.Path.EndsWith(".txt", StringComparison.OrdinalIgnoreCase));
// ensure we forward the cancellation token to GeText
var fileContents = txtFiles.Select(static (file, cancellationToken) => file.GetText(cancellationToken));
}
This will ensure that an incremental generator correctly and quickly responds to cancellation requests and does not cause delays in the host.
If the generator author is doing something expensive, such as looping over
values, they should regularly check for cancellation themselves. It is recommend
that the author use CancellationToken.ThrowIfCancellationRequested()
at
regular intervals, and allow the host to re-run them, rather than attempting to
save partially generated results which can be extremely difficult to author
correctly.
public void Initialize(IncrementalGeneratorInitializationContext context)
{
var txtFilesArray = context.AdditionalTextsProvider.Where(static f => f.Path.EndsWith(".txt", StringComparison.OrdinalIgnoreCase)).Collect();
var expensive = txtFilesArray.Select(static (files, cancellationToken) =>
{
foreach (var file in files)
{
// check for cancellation so we don't hang the host
cancellationToken.ThrowIfCancellationRequested();
// perform some expensive operation (ideally passing in the token as well)
ExpensiveOperation(file, cancellationToken);
}
});
}
While the finer grained steps allow for some coarse control of output types via
the generator host, the performance benefits are only really seen when the
driver can cache the outputs from one pipeline step to the next. While we have
generally said that the execute method in an ISourceGenerator
should be
deterministic, incremental generators actively require this property to be
true.
When calculating the required transformations to be applied as part of a step, the generator driver is free to look at inputs it has seen before and used previous computed and cached values of the transformation for these inputs.
Consider the following transformation:
IValuesProvider<string> transform = context.AdditionalTextsProvider
.Select(static (t, _) => t.Path)
.Select(static (p, _) => "prefix_" + p);
During the first execution of the pipeline each of the two lambdas will be executed for each additional file:
AdditionalText | Select1 | Select2 |
---|---|---|
Text{ Path: "abc.txt" } | "abc.txt" | "prefix_abc.txt" |
Text{ Path: "def.txt" } | "def.txt" | "prefix_def.txt" |
Text{ Path: "ghi.txt" } | "ghi.txt" | "prefix_ghi.txt" |
Now consider the case where in some future iteration, the first additional file has changed and has a different path, and the second file has changed, but kept its path the same.
AdditionalText | Select1 | Select2 |
---|---|---|
Text{ Path: "diff.txt" } | ||
Text{ Path: "def.txt" } | ||
Text{ Path: "ghi.txt" } |
The generator would run select1 on the first and second files, producing "diff.txt" and "def.txt" respectively. However, it would not need to re-run the select for the third file, as the input has not changed. It can just use the previously cached value.
AdditionalText | Select1 | Select2 |
---|---|---|
Text{ Path: "diff.txt" } | "diff.txt" | |
Text{ Path: "def.txt" } | "def.txt" | |
Text{ Path: "ghi.txt" } | "ghi.txt" |
Next the driver would look to run Select2. It would operate on "diff.txt"
producing "prefix_diff.txt"
, but when it comes to "def.txt"
it can observe
that the item produced was the same as the last iteration. Even though the
original input (Text{ Path: "def.txt" }
) was changed, the result of Select1
on it was the same. Thus there is no need to re-run Select2 on "def.txt"
as
it can just use the cached value from before. Similarly the cached state of
"ghi.txt" can be used.
AdditionalText | Select1 | Select2 |
---|---|---|
Text{ Path: "diff.txt" } | "diff.txt" | "prefix_diff.txt" |
Text{ Path: "def.txt" } | "def.txt" | "prefix_def.txt" |
Text{ Path: "ghi.txt" } | "ghi.txt" | "prefix_ghi.txt" |
In this way, only changes that are consequential flow through the pipeline, and
duplicate work is avoided. If a generator only relies on AdditionalTexts
then
the driver knows there can be no work to be done when a SyntaxTree
changes.
For a user-provided result to be comparable across iterations, there needs to be
some concept of equivalence. By default the host will use EqualityComparer<T>
to determine equivalence. There are obviously times where this is insufficient,
and there exists an extension method that allows the author to supply a comparer
that should be used when comparing values for the given transformation:
public static partial class IncrementalValueProviderExtensions
{
public static IncrementalValueProvider<TSource> WithComparer<TSource>(this IncrementalValueProvider<TSource> source, IEqualityComparer<TSource> comparer);
public static IncrementalValuesProvider<TSource> WithComparer<TSource>(this IncrementalValuesProvider<TSource> source, IEqualityComparer<TSource> comparer);
}
Allowing the generator author to specify a given comparer.
var withComparer = context.AdditionalTextsProvider
.Select(static t => t.Path)
.WithComparer(myComparer);
Note that the comparer is on a per-transformation basis, meaning an author can specify different comparers for different parts of the pipeline.
var select = context.AdditionalTextsProvider.Select(static t => t.Path);
var noCompareSelect = select.Select(...);
var compareSelect = select.WithComparer(myComparer).Select(...);
The same select node can have no comparer when acting as input to one transformation, and still provide one when acting as input to a different transformation.
The host will only invoke the given comparer when the item it is derived from has been modified. When the input value is new or being removed, or the input transformation was determined to be cached (possibly by a provided comparer) the given comparer is not considered.
Much of the success of an incremental generator will depend on creating an optimal pipeline that is amenable to caching. This section includes some general tips and best practices to achieve that
Extract out information early: It is best to get the information out of the inputs as early as possible in the pipeline. This ensures the host is not caching large, expensive object such as symbols.
Use value types where possible: Value types are more amenable to caching and usually have well defined and easy to understand comparison semantics.
Use multiple transformations: The more transformations you break the operations into, the more opportunities there are to cache. Think of transformations as being 'check points' in the execution graph. The more check points the more chances there are to match a cached value and skip any remaining work.
Build a data model: Rather than trying to pass each input item into a
Register...Output
method, consider building a data model to be the final item
passed to the output. Use the transformations to manipulate the data model, and
have well defined equality that allows you to correctly compare between
revisions of the model. This also makes testing the final Register...Outputs
significantly simpler: you can just call the method with a dummy data model and
check the generated code, rather than trying to emulate the incremental
transformations.
Consider the order of combines: Ensure that you are only combining the minimal amount of information needed (this comes back to 'Extract out information early').
Consider the following (incorrect) combine where the basic inputs are combined, then used to generate some source:
public void Initialize(IncrementalGeneratorInitializationContext context)
{
var compilation = context.CompilationProvider;
var texts = context.AdditionalTextsProvider;
// Don't do this!
var combined = texts.Combine(compilation);
context.RegisterSourceOutput(combined, static (spc, pair) =>
{
var assemblyName = pair.Right.AssemblyName;
// produce source ...
});
Any time the compilation changes, which it will frequently as the user is typing
in the IDE, then RegisterSourceOutput
will get re-run. Instead, look up the
compilation dependant information first, then combine that with the additional
files:
public void Initialize(IncrementalGeneratorInitializationContext context)
{
var assemblyName = context.CompilationProvider.Select(static (c, _) => c.AssemblyName);
var texts = context.AdditionalTextsProvider;
var combined = texts.Combine(assemblyName);
context.RegisterSourceOutput(combined, (spc, pair) =>
{
var assemblyName = pair.Right;
// produce source ...
});
}
Now, as the user types in the IDE, the assemblyName
transform will re-run, but
is very cheap and quickly returns what is likely the same value each time. That
means that unless the additional texts have also changed, the host does not need
to re-run the combine or re-generate any of the source.
Footnotes
-
Such as the IDE or the command-line compiler ↩