This repository has been archived by the owner on Mar 26, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathp0008_largest_product_in_series_test.py
67 lines (56 loc) · 3.01 KB
/
p0008_largest_product_in_series_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
"""
The four adjacent digits in the 1000-digit number that have the greatest product are 9 x 9 x 8 x 9 = 5832.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
Find the thirteen adjacent digits in the 1000-digit number that have the greatest product.
What is the value of this product?
Answer:
23514624000
"""
from euler.iter import window
from euler.math import product
def largest_product_in_series(seq, n):
return max(product(int(x)
for x in xs)
for xs
in window(seq, n))
def test_0008_largest_product_in_series():
sequence = "73167176531330624919225119674426574742355349194934" + \
"96983520312774506326239578318016984801869478851843" + \
"85861560789112949495459501737958331952853208805511" + \
"12540698747158523863050715693290963295227443043557" + \
"66896648950445244523161731856403098711121722383113" + \
"62229893423380308135336276614282806444486645238749" + \
"30358907296290491560440772390713810515859307960866" + \
"70172427121883998797908792274921901699720888093776" + \
"65727333001053367881220235421809751254540594752243" + \
"52584907711670556013604839586446706324415722155397" + \
"53697817977846174064955149290862569321978468622482" + \
"83972241375657056057490261407972968652414535100474" + \
"82166370484403199890008895243450658541227588666881" + \
"16427171479924442928230863465674813919123162824586" + \
"17866458359124566529476545682848912883142607690042" + \
"24219022671055626321111109370544217506941658960408" + \
"07198403850962455444362981230987879927244284909188" + \
"84580156166097919133875499200524063689912560717606" + \
"05886116467109405077541002256983155200055935729725" + \
"71636269561882670428252483600823257530420752963450"
assert largest_product_in_series(sequence, 13) == 23514624000