This repository contains code to optimize PyTorch image models using ONNX Runtime and TensorRT, achieving up to 8x faster inference speeds. Read the full blog post here.
Create and activate a conda environment:
conda create -n supercharge_timm_tensorrt python=3.11
conda activate supercharge_timm_tensorrt
Install required packages:
pip install timm
pip install onnx
pip install onnxruntime-gpu==1.19.2
pip install cupy-cuda12x
pip install tensorrt==10.1.0 tensorrt-cu12==10.1.0 tensorrt-cu12-bindings==10.1.0 tensorrt-cu12-libs==10.1.0
Install CUDA dependencies:
conda install -c nvidia cuda=12.2.2 cuda-tools=12.2.2 cuda-toolkit=12.2.2 cuda-version=12.2 cuda-command-line-tools=12.2.2 cuda-compiler=12.2.2 cuda-runtime=12.2.2
Install cuDNN:
conda install cudnn==9.2.1.18
Set up library paths:
export LD_LIBRARY_PATH="/home/dnth/mambaforge-pypy3/envs/supercharge_timm_tensorrt/lib:$LD_LIBRARY_PATH"
export LD_LIBRARY_PATH="/home/dnth/mambaforge-pypy3/envs/supercharge_timm_tensorrt/lib/python3.11/site-packages/tensorrt_libs:$LD_LIBRARY_PATH"
The following codes correspond to the steps in the blog post.
python 00_load_and_infer.py
Read more here
python 01_pytorch_latency_benchmark.py
Read more here
python 02_convert_to_onnx.py
Read more here
python 03_onnx_cpu_inference.py
Read more here
python 04_onnx_cuda_inference.py
Read more here
python 05_onnx_trt_inference.py
Read more here
python 06_export_preprocessing_onnx.py
Read more here
python 07_onnx_compose_merge.py
Read more here
python 08_inference_merged_model.py
Read more here
python 09_video_inference.py sample.mp4 output.mp4 --live