Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Relay][Frontend][ONNX] Fix reshape precompute, and type error #3230

Merged
merged 9 commits into from
Jun 17, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
43 changes: 27 additions & 16 deletions python/tvm/relay/frontend/onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -408,21 +408,24 @@ def _impl_v1(cls, inputs, attr, params):
shape = tuple(params[inputs[1].name_hint].asnumpy())
out = _op.reshape(inputs[0], shape)
else:
# Try to infer shape by precompute prune if possible.
# TODO: good to check inputs to be in params.
# to be enhanced when relay support list_input_names API of NNVM
logging.warning("Infering Reshape argument by precompute")
func = _expr.Function(ir_pass.free_vars(inputs[1]), inputs[1])
data, shape = inputs
logging.warning("Constant evaluating Reshape's shape argument, may reduce performance")
shape_params = ir_pass.free_vars(shape)
func = _expr.Function(shape_params, shape)
func = ir_pass.infer_type(func)
func = ir_pass.fold_constant(func)
shape_params = ir_pass.free_vars(func.body)
func = _expr.Function(shape_params, func.body)
with tvm.relay.build_config(opt_level=0):
graph, lib, params = tvm.relay.build(func, target="llvm", params=params)
ctx = tvm.context("llvm", 0)
from tvm.contrib import graph_runtime
m = graph_runtime.create(graph, lib, ctx)
m.set_input(**params)
m.run()
params_new = m.get_output(0)
inputs.pop(1)
out = _op.reshape(inputs[0], tuple(params_new.asnumpy().astype('int32').flatten()))
ex = tvm.relay.create_executor("debug")
inputs = []
for sp in shape_params:
if not sp.name_hint in params:
sh = [int(i) for i in sp.type_annotation.shape]
inputs.append(
tvm.nd.array(np.random.rand(*sh).astype('float32')))
static_shape = ex.evaluate(func)(*inputs, **params)
out = _op.reshape(data, newshape=tuple(static_shape.asnumpy()))

return out

Expand Down Expand Up @@ -567,6 +570,7 @@ class Shape(OnnxOpConverter):

@classmethod
def _impl_v1(cls, inputs, attr, params):
# TODO(@jroesch): use shape_of once it has been fixed
return _op.shape_of(inputs[0])

class Cast(OnnxOpConverter):
Expand Down Expand Up @@ -1056,8 +1060,15 @@ def from_onnx(self, graph, opset):
if op_name == "Constant":
t_proto = self._parse_attr(node.attribute)["value"]
self._num_param += 1
self._params[node.output[0]] = self._parse_array(t_proto)
self._nodes[node.output[0]] = new_var(node.output[0], shape=list(t_proto.dims))
# We should convert scalar integers to int32, to normalize.
array = self._parse_array(t_proto)
if len(array.shape) == 0 and array.dtype == 'int64':
array = _nd.array(array.asnumpy().astype('int32'))
self._params[node.output[0]] = array
self._nodes[node.output[0]] = new_var(
node.output[0],
shape=list(t_proto.dims),
dtype=array.dtype)
else:
if op_name == "ConstantFill":
fill_value = attr.get('value', 0.0)
Expand Down
47 changes: 47 additions & 0 deletions tests/python/frontend/onnx/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,8 +14,11 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import attr
import numpy as np
import math
import torch
import torchvision
import topi
import topi.testing
import tvm
Expand Down Expand Up @@ -1070,6 +1073,47 @@ def test_LogSoftmax():
'LogSoftmax',
{'axis': 1})

def check_torch_conversion(model, input_size):
dummy_input = torch.randn(*input_size)
file_name = '{}.onnx'.format(model.__name__)
# Set verbose=True for more output
torch.onnx.export(model(), dummy_input, file_name, export_params=True, verbose=False)
onnx_model = onnx.load(file_name)
shapes = { '0' : input_size }
expr, params = relay.frontend.from_onnx(onnx_model, shape=shapes)

def test_resnet():
check_torch_conversion(torchvision.models.resnet18, (1,3,224,224))
# check_torch_conversion(torchvision.models.resnet101, (1,3,224,224))

# def test_alexnet():
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What's the reason for these tests being commented out? Can we add a TODO if it's pending on some feature that isn't implemented yet?

# Torch's ONNX export does not support the adaptive pooling used by AlexNet?
# check_torch_conversion(torchvision.models.alexnet, (1,3,224,224))

# Torch's ONNX export does not support the adaptive pooling used by vgg16?
# def test_vgg16():
# check_torch_conversion(torchvision.models.vgg16, (1,3,224,224))

# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_squeezenet():
# # Torch's ONNX export does not support the max pooling used by Squezenet
# check_torch_conversion(torchvision.models.squeezenet1_0, (1,3,224,224))

def test_densenet():
check_torch_conversion(torchvision.models.densenet161, (1,3,224,224))

def test_inception():
check_torch_conversion(torchvision.models.inception_v3, (1,3,224,224))

# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_googlenet():
# check_torch_conversion(torchvision.models.googlenet, (1,3,224,224))

# TODO(@jroesch): Update Torch + ONNX to support this import.
# def test_shufflenetv2():
# check_torch_conversion(torchvision.models.shufflenetv2, (1,3,224,224))


if __name__ == '__main__':
test_flatten()
test_reshape()
Expand Down Expand Up @@ -1109,3 +1153,6 @@ def test_LogSoftmax():
test_ParametricSoftplus()
test_Scale()
test_LogSoftmax()
test_resnet()
test_inception()
test_densenet()