-
Notifications
You must be signed in to change notification settings - Fork 3.5k
/
Copy pathstorage_rewrite.cc
1018 lines (978 loc) · 35.3 KB
/
storage_rewrite.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* Copyright (c) 2017 by Contributors
* \file storage_rewrite.cc
* \brief Memory access pattern analysis and optimization.
* Re-write data access to enable memory sharing when possible.
*/
#include <tvm/ir.h>
#include <tvm/ir_pass.h>
#include <tvm/ir_mutator.h>
#include <tvm/ir_visitor.h>
#include <tvm/target_info.h>
#include <map>
#include <unordered_set>
#include <unordered_map>
#include "ir_util.h"
#include "../arithmetic/compute_expr.h"
#include "../runtime/thread_storage_scope.h"
namespace tvm {
namespace ir {
using runtime::StorageRank;
using runtime::StorageScope;
// Find a linear pattern of storage access
// Used for liveness analysis.
// Composite scopes(loop/thread_launch/IfThen) is represented by two points:
// before_scope -> scope_body -> after_scope
//
// The linear_seq_ stores before_scope and after_scope.
// The access to the arrays are stored at the after_scope point.
//
// Define "scope" as the body of For/thread_launch/IfThenElse
// This pass tries to detect last point that we need to keep memory
// alive under the same scope as allocate.
// The storage need to be kept alive between allocate and last access.
// The free point is only inserted at the same scope of allocate.
//
class LinearAccessPatternFinder final : public IRVisitor {
public:
/*! \brief record the touch hist of statment. */
struct StmtEntry {
// The statment
const Node* stmt;
// The index in the linear_seq_ to point to end of the nested scope.
// This is only set to non-zero if stmt is a nested scope.
// if offset > 0, means this is the begin, the end entry is current_index + offset
// if offset < 0, means this is the end, the begin entry is current_index + offset
int64_t scope_pair_offset{0};
// The buffer variables this statment touched.
std::vector<const Variable*> touched;
};
// The scope of each allocation
struct AllocEntry {
// Scope used for allocation.
StorageScope storage_scope;
// scope level
size_t level{0};
// allocation stmt
const Allocate* alloc{nullptr};
};
void Visit_(const Allocate* op) final {
size_t level = scope_.size();
const Variable* buf = op->buffer_var.get();
auto it = alloc_info_.find(buf);
CHECK(it != alloc_info_.end());
CHECK(it->second.alloc == nullptr);
it->second.alloc = op;
it->second.level = level;
IRVisitor::Visit_(op);
}
void Visit_(const Store* op) final {
scope_.push_back(StmtEntry());
// visit subexpr
IRVisitor::Visit_(op);
// Add write access.
const Variable* buf = op->buffer_var.get();
auto it = alloc_info_.find(buf);
if (it != alloc_info_.end() && it->second.alloc) {
CHECK_LT(it->second.level, scope_.size());
scope_[it->second.level].touched.push_back(buf);
}
StmtEntry e = scope_.back();
scope_.pop_back();
if (e.touched.size() != 0) {
e.stmt = op;
linear_seq_.push_back(e);
}
}
void Visit_(const Evaluate* op) final {
scope_.push_back(StmtEntry());
// visit subexpr
IRVisitor::Visit_(op);
StmtEntry e = scope_.back();
scope_.pop_back();
if (e.touched.size() != 0) {
e.stmt = op;
linear_seq_.push_back(e);
}
}
void Visit_(const Load* op) final {
// Add write access.
IRVisitor::Visit_(op);
const Variable* buf = op->buffer_var.get();
auto it = alloc_info_.find(buf);
if (it != alloc_info_.end() && it->second.alloc) {
CHECK_LT(it->second.level, scope_.size())
<< "Load memory in places other than store.";
scope_[it->second.level].touched.push_back(buf);
}
}
void Visit_(const Call* op) final {
if (op->is_intrinsic(intrinsic::tvm_address_of)) {
const Load* l = op->args[0].as<Load>();
this->Visit(l->index);
} else {
IRVisitor::Visit_(op);
}
}
void Visit_(const Variable* buf) final {
// Directly reference to the variable count as a read.
auto it = alloc_info_.find(buf);
if (it != alloc_info_.end() && it->second.alloc) {
CHECK_LT(it->second.level, scope_.size())
<< " buf=" << buf->name_hint;
scope_[it->second.level].touched.push_back(buf);
}
}
template<typename T>
void VisitNewScope(const T* op) {
scope_.push_back(StmtEntry());
StmtEntry e;
e.stmt = op;
int64_t begin_index = static_cast<int64_t>(linear_seq_.size());
// before scope.
linear_seq_.push_back(e);
IRVisitor::Visit_(op);
// after scope.
e.touched = std::move(scope_.back().touched);
scope_.pop_back();
int64_t end_index = static_cast<int64_t>(linear_seq_.size());
CHECK_GT(end_index, begin_index);
e.scope_pair_offset = begin_index - end_index;
linear_seq_.push_back(e);
// record the pointer to end index.
CHECK_NE(end_index, 0U);
linear_seq_[begin_index].scope_pair_offset = end_index - begin_index;
}
void Visit_(const AttrStmt* op) final {
// Only record the outer most thread extent.
if (op->attr_key == attr::thread_extent && !in_thread_env_) {
in_thread_env_ = true;
VisitNewScope(op);
in_thread_env_ = false;
} else if (op->attr_key == attr::extern_scope) {
VisitNewScope(op);
} else if (op->attr_key == attr::virtual_thread) {
VisitNewScope(op);
} else if (op->attr_key == attr::storage_scope) {
const Variable* buf = op->node.as<Variable>();
alloc_info_[buf].storage_scope =
StorageScope::make(op->value.as<StringImm>()->value);
IRVisitor::Visit_(op);
} else {
IRVisitor::Visit_(op);
}
}
void Visit_(const IfThenElse* op) final {
VisitNewScope(op);
}
void Visit_(const For* op) final {
VisitNewScope(op);
}
void Visit_(const AssertStmt* op) final {
VisitNewScope(op);
}
// linearized access sequence.
std::vector<StmtEntry> linear_seq_;
// The storage scope of each buffer
std::unordered_map<const Variable*, AllocEntry> alloc_info_;
private:
// Whether already in thread env.
bool in_thread_env_{false};
// The scope stack.
std::vector<StmtEntry> scope_;
};
// Verify if the statement can be run safely via inplace fashion
//
// Detect pattern: dst[index] = f(src[index])
//
// WARNING: the current detection algorithm cannot handle the case
// when a location in an array is written multiple times
//
// For example, the following program will pass the check,
// but we cannot make A and B to be the same array.
//
// A[0] = B[0] + 1
// A[0] = B[0] + 1
//
// The high level code generator needs to ensure that the generated
// code only write each location of the target array once.
//
// This is the case with IR generated by the current compute schedule.
// We explicitly return false if we find there is an extern block
// which can be arbitrary IR.
//
// Neve-the-less, inplace detector should be used with care in mind.
// We may also consider introduce a condition checker that checks
// if every index only visited once for an absolute sufficient condition.
//
// The code after inplace transformation is no longer idempotent.
//
class InplaceOpVerifier : public IRVisitor {
public:
bool Check(const Node* stmt,
const Variable* dst,
const Variable* src) {
dst_ = dst;
src_ = src;
result_ = true;
if (stmt->is_type<AttrStmt>()) {
Visit_(static_cast<const AttrStmt*>(stmt));
} else if (stmt->is_type<For>()) {
Visit_(static_cast<const For*>(stmt));
} else if (stmt->is_type<IfThenElse>()) {
Visit_(static_cast<const IfThenElse*>(stmt));
} else if (stmt->is_type<Store>()) {
Visit_(static_cast<const Store*>(stmt));
} else {
return false;
}
return result_;
}
using IRVisitor::Visit_;
void Visit(const NodeRef& e) final {
if (!result_) return;
IRVisitor::Visit(e);
}
void Visit_(const Variable* op) final {
// assume all opaque access is unsafe
if (op == dst_ || op == src_) {
result_ = false; return;
}
}
void Visit_(const Store* op) final {
++mem_nest_;
this->Visit(op->index);
--mem_nest_;
if (op->buffer_var.get() == dst_) {
store_ = op;
this->Visit(op->value);
this->Visit(op->predicate);
store_ = nullptr;
} else {
this->Visit(op->value);
this->Visit(op->predicate);
}
}
void Visit_(const AttrStmt* op) final {
// always reject extern code
if (op->attr_key == attr::extern_scope ||
op->attr_key == attr::volatile_scope) {
result_ = false; return;
}
IRVisitor::Visit_(op);
}
void Visit_(const Load* op) final {
const Variable* buf = op->buffer_var.get();
// cannot read from dst_ (no reduction)
if (buf == dst_) {
result_ = false; return;
}
// do not allow indirect memory load
if (mem_nest_ != 0) {
result_ = false; return;
}
if (src_ == buf) {
if (store_ == nullptr ||
store_->value.type() != op->type ||
!ir::Equal(store_->index, op->index)) {
result_ = false; return;
}
}
++mem_nest_;
IRVisitor::Visit_(op);
--mem_nest_;
}
private:
// result of the check
bool result_{true};
// destination memory
const Variable* dst_;
// source variable
const Variable* src_;
// counter of load,
// it is not safe to inplace when there is nested load like A[B[i]]
int mem_nest_{0};
// The current store to be inspected
const Store* store_{nullptr};
};
// Planner to plan and rewrite memory allocation.
class StoragePlanRewriter : public IRMutator {
public:
using StmtEntry = LinearAccessPatternFinder::StmtEntry;
using AllocEntry = LinearAccessPatternFinder::AllocEntry;
Stmt Rewrite(Stmt stmt, bool detect_inplace) {
detect_inplace_ = detect_inplace;
// plan the rewrite
LinearAccessPatternFinder finder;
finder.Visit(stmt);
this->LivenessAnalysis(finder.linear_seq_);
this->PlanMemory(finder.linear_seq_, finder.alloc_info_);
this->PrepareNewAlloc();
// start rewrite
stmt = this->Mutate(stmt);
if (attach_map_.count(nullptr)) {
std::vector<Stmt> nest;
for (StorageEntry* e : attach_map_.at(nullptr)) {
// CHECK_EQ(e->scope.rank, 0);
if (e->new_alloc.defined()) {
nest.emplace_back(AttrStmt::make(
e->alloc_var, attr::storage_scope,
StringImm::make(e->scope.to_string()),
Evaluate::make(0)));
nest.push_back(e->new_alloc);
}
}
stmt = MergeNest(nest, stmt);
}
return stmt;
}
Stmt Mutate_(const Store* op, const Stmt& s) final {
Stmt stmt = IRMutator::Mutate_(op, s);
op = stmt.as<Store>();
auto it = alloc_map_.find(op->buffer_var.get());
if (it == alloc_map_.end()) return stmt;
return Store::make(it->second->alloc_var,
op->value,
RemapIndex(op->value.type(), op->index, it->second),
op->predicate);
}
Expr Mutate_(const Load* op, const Expr& e) final {
Expr expr = IRMutator::Mutate_(op, e);
op = expr.as<Load>();
auto it = alloc_map_.find(op->buffer_var.get());
if (it == alloc_map_.end()) return expr;
return Load::make(op->type,
it->second->alloc_var,
RemapIndex(op->type, op->index, it->second),
op->predicate);
}
Expr Mutate_(const Variable* op, const Expr& e) final {
auto it = alloc_map_.find(op);
if (it != alloc_map_.end()) {
if (it->second->bits_offset != 0) {
LOG(WARNING) << "Use a merged buffer variable address, could cause error";
}
return it->second->alloc_var;
} else {
return e;
}
}
Expr Mutate_(const Call* op, const Expr& e) final {
if (op->is_intrinsic(intrinsic::tvm_access_ptr)) {
CHECK_EQ(op->args.size(), 5U);
Type dtype = op->args[0].type();
const Variable* buffer = op->args[1].as<Variable>();
auto it = alloc_map_.find(buffer);
if (it == alloc_map_.end()) return IRMutator::Mutate_(op, e);
const StorageEntry* se = it->second;
Expr offset = Mutate(op->args[2]);
Expr extent = Mutate(op->args[3]);
uint64_t elem_bits = dtype.bits() * dtype.lanes();
CHECK_EQ(se->bits_offset % elem_bits, 0U);
if (se->bits_offset != 0) {
offset = make_const(offset.type(), se->bits_offset / elem_bits) + offset;
}
return Call::make(
op->type, op->name,
{op->args[0], se->alloc_var, offset, extent, op->args[4]},
op->call_type);
} else {
return IRMutator::Mutate_(op, e);
}
}
Stmt Mutate_(const AttrStmt* op, const Stmt& s) final {
if (op->attr_key == attr::storage_scope) {
return this->Mutate(op->body);
} else if (op->attr_key == attr::thread_extent ||
op->attr_key == attr::virtual_thread ||
attr::IsPragmaKey(op->attr_key)) {
// remake all the allocation at the attach scope.
if (attach_map_.count(op)) {
auto& svec = attach_map_[op];
Stmt stmt = IRMutator::Mutate_(op, s);
op = stmt.as<AttrStmt>();
return AttrStmt::make(
op->node, op->attr_key, op->value,
MakeAttach(svec, op->body));
} else {
return IRMutator::Mutate_(op, s);
}
} else if (op->attr_key == attr::volatile_scope) {
Stmt stmt = IRMutator::Mutate_(op, s);
op = stmt.as<AttrStmt>();
auto it = alloc_map_.find(op->node.as<Variable>());
if (it == alloc_map_.end()) return stmt;
return AttrStmt::make(
it->second->alloc_var, op->attr_key, op->value, op->body);
} else {
return IRMutator::Mutate_(op, s);
}
}
Stmt Mutate_(const For* op, const Stmt& s) final {
CHECK(op->for_type != ForType::Vectorized)
<< "VectorizeLoop before LiftStorageAlloc";
// remake all the allocation at the attach scope.
if (attach_map_.count(op)) {
auto& svec = attach_map_[op];
Stmt stmt = IRMutator::Mutate_(op, s);
op = stmt.as<For>();
return For::make(
op->loop_var, op->min, op->extent, op->for_type, op->device_api,
MakeAttach(svec, op->body));
} else {
return IRMutator::Mutate_(op, s);
}
}
Stmt Mutate_(const Allocate* op, const Stmt& s) final {
return this->Mutate(op->body);
}
private:
struct StorageEntry {
// The scope that this alloc attaches after
// For shared/local memory it is beginning of the thread extent.
// for global memory it is nullptr, means beginning of everything.
const Node* attach_scope_{nullptr};
// The constant size of the buffer in bits, only used if it is constant
uint64_t const_nbits{0};
// The storage scope.
StorageScope scope;
// Allocs that shares this entry.
std::vector<const Allocate*> allocs;
// The children of this entry, not including itself.
std::vector<StorageEntry*> merged_children;
// The replacement allocation, if any.
Stmt new_alloc;
// The var expr of new allocation.
VarExpr alloc_var;
// The allocation element type.
Type elem_type;
// This is non-zero if this allocate is folded into another one
// the address(in bits) becomes alloc_var + bits_offset;
// can be effectively converted to the element type.
// We need to convert bit_offset to offset of specific element type later.
//
// We use bits(instead of bytes) to support non-conventional indexing in hardware.
// When we are merging buffer together, the bits_offset are set to be aligned
// to certain value given by the max_simd_bits property of the special memory.
//
// This allows effective sharing among different types as long as their alignment
// requirement fits into the max_simd_bits.
uint64_t bits_offset{0};
};
// Alllocate entry of node.
// Event entry in liveness analysis
struct EventEntry {
// variables we generate
std::vector<const Variable*> gen;
// variables we kill
std::vector<const Variable*> kill;
};
Stmt MakeAttach(const std::vector<StorageEntry*>& svec,
Stmt body) {
std::vector<Stmt> nest;
for (StorageEntry* e : svec) {
if (e->new_alloc.defined()) {
nest.emplace_back(AttrStmt::make(
e->alloc_var, attr::storage_scope,
StringImm::make(e->scope.to_string()),
Evaluate::make(0)));
nest.push_back(e->new_alloc);
}
}
return MergeNest(nest, body);
}
// Remap the index
Expr RemapIndex(Type dtype, Expr index, StorageEntry* e) {
if (e->bits_offset == 0) return index;
uint64_t elem_bits = dtype.bits() * dtype.lanes();
CHECK_EQ(e->bits_offset % elem_bits, 0U);
return make_const(index.type(), e->bits_offset / elem_bits) + index;
}
// Prepare the new allocations
void PrepareNewAlloc() {
for (size_t i = 0; i < alloc_vec_.size(); ++i) {
StorageEntry* e = alloc_vec_[i].get();
attach_map_[e->attach_scope_].push_back(e);
}
// find allocation via attach map.
for (auto &kv : attach_map_) {
// find the element with the most amount of bytes.
std::vector<StorageEntry*>& vec = kv.second;
// try to find merge, for tagged memory
for (size_t i = 0; i < vec.size(); ++i) {
StorageEntry* e = vec[i];
if (e->scope.tag.length() != 0) {
CHECK_NE(e->const_nbits, 0U)
<< "Special tagged memory must be const size";
for (size_t j = 0; j < i; ++j) {
if (e->scope == vec[j]->scope) {
vec[j]->merged_children.push_back(e);
break;
}
}
}
}
// Start allocation
for (size_t i = 0; i < vec.size(); ++i) {
StorageEntry* e = vec[i];
// already merged
if (e->bits_offset != 0) continue;
if (e->merged_children.size() != 0) {
NewAllocTagMerged(e); continue;
}
// Get the allocation size;
e->alloc_var = e->allocs[0]->buffer_var;
Type alloc_type = e->allocs[0]->type;
for (const Allocate* op : e->allocs) {
if (op->type.lanes() > alloc_type.lanes()) {
alloc_type = op->type;
}
}
if (e->allocs.size() == 1) {
// simply use the original allocation.
Expr sz = arith::ComputeReduce<Mul>(e->allocs[0]->extents,
make_const(Int(32), 1));
e->new_alloc = Allocate::make(
e->alloc_var, alloc_type, {sz},
e->allocs[0]->condition, Evaluate::make(0));
if (e->scope.tag.length() != 0) {
MemoryInfo info = GetMemoryInfo(e->scope.to_string());
uint64_t total_elem = e->const_nbits / e->elem_type.bits();
CHECK_LE(total_elem * e->elem_type.bits(), info->max_num_bits)
<< "Allocation exceed bound of memory tag " << e->scope.to_string();
}
} else {
// Build a merged allocation
Expr combo_size;
for (const Allocate* op : e->allocs) {
Expr sz = arith::ComputeReduce<Mul>(op->extents, make_const(Int(32), 1));
auto nbits = op->type.bits() * op->type.lanes();
if (const auto* imm = sz.as<IntImm>()) {
if (imm->value > std::numeric_limits<int>::max() / nbits) {
LOG(WARNING) << "The allocation requires : " << imm->value
<< " * " << nbits
<< " bits, which is greater than the maximum of"
" int32. The size is cast to int64."
<< "\n";
sz = make_const(Int(64), imm->value);
}
}
// transform to bits
auto sz_nbits = sz * nbits;
if (combo_size.defined()) {
combo_size = max(combo_size, sz_nbits);
} else {
combo_size = sz_nbits;
}
}
// transform to alloc bytes
auto type_bits = alloc_type.bits() * alloc_type.lanes();
bool divided = analyzer_.CanProve(indexmod(combo_size, type_bits) == 0);
combo_size = indexdiv(combo_size, type_bits);
// round up for can not divided
if (!divided) {
combo_size = combo_size + make_const(Int(32), 1);
}
combo_size = ir::Simplify(combo_size);
e->new_alloc = Allocate::make(
e->alloc_var, alloc_type, {combo_size}, const_true(),
Evaluate::make(0));
if (e->scope.tag.length() != 0) {
MemoryInfo info = GetMemoryInfo(e->scope.to_string());
uint64_t total_elem = e->const_nbits / e->elem_type.bits();
CHECK_LE(total_elem * e->elem_type.bits(), info->max_num_bits)
<< "Allocation exceed bound of memory tag " << e->scope.to_string();
}
}
}
}
}
// New allocation for merged data
void NewAllocTagMerged(StorageEntry* e) {
CHECK_NE(e->scope.tag.length(), 0U);
// allocate with element type.
CHECK_NE(e->const_nbits, 0U);
MemoryInfo info = GetMemoryInfo(e->scope.to_string());
uint64_t total_bits = e->const_nbits;
// By default, align to 32 bits.
size_t align = 32;
if (info.defined()) {
align = info->max_simd_bits;
}
// Always align to max_simd_bits
// so we can remap types by keeping this property
if (total_bits % align != 0) {
total_bits += align - (total_bits % align);
}
e->alloc_var = e->allocs[0]->buffer_var;
for (StorageEntry* child : e->merged_children) {
CHECK_NE(child->const_nbits, 0U);
CHECK_NE(total_bits, 0U);
child->bits_offset = total_bits;
child->alloc_var = e->alloc_var;
total_bits += child->const_nbits;
if (total_bits % align != 0) {
total_bits += align - (total_bits % align);
}
}
uint64_t type_bits = e->elem_type.bits() * e->elem_type.lanes();
Expr alloc_size = make_const(e->allocs[0]->extents[0].type(),
(total_bits + type_bits - 1) / type_bits);
e->new_alloc = Allocate::make(
e->alloc_var, e->elem_type, {alloc_size}, const_true(),
Evaluate::make(0));
if (info.defined()) {
CHECK_LE(total_bits, info->max_num_bits)
<< "Allocation exceed bound of memory tag " << e->scope.to_string();
}
}
// Liveness analysis to find gen and kill point of each variable.
void LivenessAnalysis(const std::vector<StmtEntry>& seq) {
// find kill point, do a reverse linear scan.
std::unordered_set<const Variable*> touched;
for (size_t i = seq.size(); i != 0; --i) {
const StmtEntry& s = seq[i - 1];
for (const Variable* buffer : s.touched) {
if (!touched.count(buffer)) {
touched.insert(buffer);
event_map_[s.stmt].kill.push_back(buffer);
}
}
}
// find gen point, do forward scan
touched.clear();
for (size_t i = 0; i < seq.size(); ++i) {
int64_t offset = seq[i].scope_pair_offset;
if (offset < 0) continue;
const StmtEntry& s = seq[i + offset];
for (const Variable* buffer : s.touched) {
if (!touched.count(buffer)) {
touched.insert(buffer);
event_map_[s.stmt].gen.push_back(buffer);
}
}
}
}
void PlanNewScope(const Node* op) {
if (thread_scope_ != nullptr) {
CHECK(thread_scope_ == op);
// erase all memory atatched to this scope.
for (auto it = const_free_map_.begin(); it != const_free_map_.end();) {
if (it->second->attach_scope_ == op) {
it = const_free_map_.erase(it);
} else {
++it;
}
}
for (auto it = sym_free_list_.begin(); it != sym_free_list_.end();) {
if ((*it)->attach_scope_ == op) {
it = sym_free_list_.erase(it);
} else {
++it;
}
}
thread_scope_ = nullptr;
} else {
thread_scope_ = op;
}
}
// Memory plan algorithm
void PlanMemory(const std::vector<StmtEntry>& seq,
const std::unordered_map<const Variable*, AllocEntry>& alloc_info) {
std::unordered_set<const Variable*> inplace_flag;
for (size_t i = 0; i < seq.size(); ++i) {
const StmtEntry& s = seq[i];
auto it = event_map_.find(seq[i].stmt);
// scope_pair_offset >= 0 means it is either
// - leaf stmt(offset = 0)
// - beginning of scope(offset < 0)
// In both cases, we need to handle the gen event correctly
if (it != event_map_.end() && seq[i].scope_pair_offset >= 0) {
// Inplace operation detection
// specially handle this
bool detect_inplace = detect_inplace_ && (it->second.gen.size() <= 2);
for (const Variable* var : it->second.gen) {
CHECK(alloc_info.count(var));
const AllocEntry& ae = alloc_info.at(var);
StorageEntry* dst_entry = nullptr;
// inplace detection
if (detect_inplace) {
// only one inplace var for s.stmt
bool inplace_found = false;
for (const Variable* src : it->second.kill) {
if (!inplace_flag.count(src) && alloc_map_.count(src)) {
InplaceOpVerifier visitor;
StorageEntry* src_entry = alloc_map_.at(src);
if (src_entry->scope == ae.storage_scope &&
src_entry->attach_scope_ == thread_scope_ &&
src_entry->elem_type == ae.alloc->type.element_of() &&
visitor.Check(s.stmt, var, src)) {
uint64_t const_nbits =
static_cast<uint64_t>(ae.alloc->constant_allocation_size()) *
ae.alloc->type.bits() *
ae.alloc->type.lanes();
if (src_entry->const_nbits == const_nbits && !inplace_found) {
// successfully inplace
dst_entry = src_entry;
inplace_flag.insert(src);
inplace_found = true;
}
}
}
}
}
if (dst_entry == nullptr) {
dst_entry = FindAlloc(ae.alloc, thread_scope_, ae.storage_scope);
}
dst_entry->allocs.emplace_back(ae.alloc);
alloc_map_[var] = dst_entry;
}
}
// enter/exit new scope
if (s.stmt->is_type<AttrStmt>()) {
const auto* op = static_cast<const AttrStmt*>(s.stmt);
if (op->attr_key == attr::thread_extent ||
op->attr_key == attr::virtual_thread ||
attr::IsPragmaKey(op->attr_key)) {
PlanNewScope(op);
} else {
CHECK(op->attr_key == attr::extern_scope);
}
} else if (s.stmt->is_type<For>()) {
const auto* op = static_cast<const For*>(s.stmt);
if (op->for_type == ForType::Parallel) {
if (thread_scope_ == nullptr || thread_scope_ == op) {
PlanNewScope(op);
}
}
}
// scope_pair_offset <= 0 means it is either
// - leaf stmt(offset = 0)
// - end of scope(offset < 0)
// In both cases, we need to handle the kill event correctly
if (it != event_map_.end() && seq[i].scope_pair_offset <= 0) {
for (const Variable* var : it->second.kill) {
// skip space which are already replaced by inplace
if (!inplace_flag.count(var)) {
this->Free(var);
}
}
}
}
}
// Allocate new storage entry.
StorageEntry* NewAlloc(const Allocate* op,
const Node* attach_scope,
const StorageScope& scope,
size_t const_nbits) {
CHECK(op != nullptr);
// Re-use not successful, allocate a new buffer.
std::unique_ptr<StorageEntry> entry(new StorageEntry());
entry->attach_scope_ = attach_scope;
entry->scope = scope;
entry->elem_type = op->type.element_of();
entry->const_nbits = const_nbits;
StorageEntry* e = entry.get();
alloc_vec_.emplace_back(std::move(entry));
return e;
}
StorageEntry* FindAlloc(const Allocate* op,
const Node* attach_scope,
const StorageScope& scope) {
CHECK(op != nullptr);
// skip plan for local variable,
// compiler can do a better job with register allocation.
const uint64_t match_range = 16;
uint64_t op_elem_bits = op->type.bits() * op->type.lanes();
uint64_t const_nbits = static_cast<uint64_t>(
op->constant_allocation_size() * op_elem_bits);
// disable reuse of small arrays, they will be lowered to registers in LLVM
// This rules only apply if we are using non special memory
if (scope.tag.length() == 0) {
if (scope.rank >= StorageRank::kWarp || op->type.is_handle()) {
return NewAlloc(op, attach_scope, scope, const_nbits);
}
if (const_nbits > 0 && const_nbits <= 32) {
return NewAlloc(op, attach_scope, scope, const_nbits);
}
}
if (const_nbits != 0) {
// constant allocation.
auto begin = const_free_map_.lower_bound(const_nbits / match_range);
auto mid = const_free_map_.lower_bound(const_nbits);
auto end = const_free_map_.upper_bound(const_nbits * match_range);
// start looking at the buffer that is bigger than the required size first
for (auto it = mid; it != end; ++it) {
StorageEntry *e = it->second;
if (e->attach_scope_ != attach_scope) continue;
if (e->scope != scope) continue;
// when not divided, no reuse, eg, float4 vs float3
if (e->bits_offset % op_elem_bits != 0) continue;
e->const_nbits = std::max(const_nbits, e->const_nbits);
const_free_map_.erase(it);
return e;
}
// then start looking at smaller buffers.
for (auto it = mid; it != begin;) {
--it;
StorageEntry *e = it->second;
if (e->attach_scope_ != attach_scope) continue;
if (e->scope != scope) continue;
if (e->elem_type != op->type.element_of()) continue;
e->const_nbits = std::max(const_nbits, e->const_nbits);
const_free_map_.erase(it);
return e;
}
} else {
// Simple strategy: round roubin.
for (auto it = sym_free_list_.begin();
it != sym_free_list_.end(); ++it) {
StorageEntry* e = *it;
if (e->attach_scope_ != attach_scope) continue;
if (e->scope != scope) continue;
if (e->elem_type != op->type.element_of()) continue;
sym_free_list_.erase(it);
return e;
}
}
return NewAlloc(op, attach_scope, scope, const_nbits);
}
// simulated free.
void Free(const Variable* var) {
auto it = alloc_map_.find(var);
CHECK(it != alloc_map_.end());
StorageEntry* e = it->second;
CHECK_NE(e->allocs.size(), 0U);
// disable reuse of small arrays, they will be lowered to registers in LLVM
// This rules only apply if we are using non special memory
if (e->scope.tag.length() == 0) {
// Disable sharing of local memory.
if (e->scope.rank >= StorageRank::kWarp ||
e->allocs[0]->type.is_handle()) return;
// disable reuse of small arrays
if (e->const_nbits > 0 && e->const_nbits <= 32) return;
}
// normal free.
if (e->const_nbits != 0) {
const_free_map_.insert({e->const_nbits, e});
} else {
sym_free_list_.push_back(e);
}
}
// thread scope.
const Node* thread_scope_{nullptr};
// whether enable inplace detection.
bool detect_inplace_{false};
// Locations of free ops.
std::unordered_map<const Node*, EventEntry> event_map_;
// constant size free map.
std::multimap<uint64_t, StorageEntry*> const_free_map_;
// symbolic free list, for non constant items.
std::list<StorageEntry*> sym_free_list_;
// The allocation attach map
std::unordered_map<const Node*, std::vector<StorageEntry*> > attach_map_;
// The allocation assign map
std::unordered_map<const Variable*, StorageEntry*> alloc_map_;
// The allocations
std::vector<std::unique_ptr<StorageEntry> > alloc_vec_;
// analyzer
arith::Analyzer analyzer_;
};
// Turn alloc into vector alloc
// if all its access is the same vector type.
class VectorAllocRewriter : public IRMutator {
public:
Expr Mutate_(const Load* op, const Expr& e) final {
UpdateTypeMap(op->buffer_var.get(), op->type);
return IRMutator::Mutate_(op, e);
}
Stmt Mutate_(const Store* op, const Stmt& s) final {
UpdateTypeMap(op->buffer_var.get(), op->value.type());
return IRMutator::Mutate_(op, s);
}
Expr Mutate_(const Call* op, const Expr& e) final {
if (op->is_intrinsic(intrinsic::tvm_access_ptr)) {
Type dtype = op->args[0].type();
const Variable* buffer = op->args[1].as<Variable>();
UpdateTypeMap(buffer, dtype);
}
return IRMutator::Mutate_(op, e);
}
Stmt Mutate_(const Allocate* op, const Stmt& s) final {
Stmt stmt = IRMutator::Mutate_(op, s);
op = stmt.as<Allocate>();
const auto& tvec = acc_map_[op->buffer_var.get()];
if (tvec.size() == 1 &&
tvec[0].element_of() == op->type.element_of() &&
tvec[0].lanes() % op->type.lanes() == 0 &&
tvec[0].lanes() != op->type.lanes()) {
int factor = tvec[0].lanes() / op->type.lanes();
Array<Expr> extents = op->extents;
arith::ModularSet me = analyzer_.modular_set(extents[extents.size() - 1]);
if (me->base % factor == 0 && me->coeff % factor == 0) {
extents.Set(extents.size() - 1,
extents[extents.size() - 1] / make_const(extents[0].type(), factor));
return Allocate::make(
op->buffer_var, tvec[0], extents,
op->condition, op->body);
}
}
return stmt;
}
void UpdateTypeMap(const Variable* buffer, Type t) {
auto& tvec = acc_map_[buffer];
if (std::find(tvec.begin(), tvec.end(), t) == tvec.end()) {
tvec.push_back(t);
}
}
// Internal access map
std::unordered_map<const Variable*, std::vector<Type> > acc_map_;
// internal analyzer
arith::Analyzer analyzer_;
};
LoweredFunc PointerValueTypeRewrite(LoweredFunc f) {
auto n = make_node<LoweredFuncNode>(*f.operator->());
VectorAllocRewriter rewriter;
n->body = rewriter.Mutate(n->body);
for (Var arg : f->args) {
if (arg.type().is_handle()) {
const auto& tvec = rewriter.acc_map_[arg.get()];
if (tvec.size() == 1) {
Expr dtype = make_const(tvec[0], 0);
n->handle_data_type.Set(arg, dtype);
} else {