-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathchapter8.tex
1288 lines (1124 loc) · 51.9 KB
/
chapter8.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Integration of Forms} \label{ch:integralofforms}
\section{Differential Forms}
\begin{df}
A \negrito{$k$-differential form field in $\reals^n$} is an expression
of the form
$$\omega = \dsum _{ 1 \leq j_1 \leq j_2 \leq \cdots \leq j_k \leq n} a_{j_1j_2\ldots j_k}\d{x_{j_1}} \wedge \d{x_{j_2}} \wedge \cdots \d{x_{j_k}},
$$where the $a_{j_1j_2\ldots j_k}$ are differentiable
functions in $\reals^n$.
\end{df}
A $0$-differential form in $\reals^n$ is simply a differentiable
function in $\reals^n$.
\begin{exa}
$$g(x, y, z, w) = x + y^2 + z^3 + w^4$$is a 0-form in $\reals^4$.
\end{exa}
\begin{exa}
An example of a 1-form field in $\reals^3$ is
$$\omega = x\d{x}+ y^2\d{y} + xyz^3\d{z}.$$
\end{exa}
\begin{exa}
An example of a 2-form field in $\reals^3$ is
$$\omega = x^2\d{x}\wedge \d{y} + y^2\d{y} \wedge \d{z} + \d{z} \wedge \d{x}.$$
\end{exa}
\begin{exa}
An example of a 3-form field in $\reals^3$ is
$$\omega = (x + y + z)\d{x}\wedge \d{y} \wedge \d{z}.$$
\end{exa}
We shew now how to multiply differential forms.
\begin{exa}
The product of the 1-form fields in $\reals^3$
$$\omega_1 = y\d{x}+ x\d{y},$$
$$\omega_2 = -2x\d{x}+ 2y\d{y},$$is
$$\omega_1 \wedge \omega_2 = (2x^2 + 2y^2)\d{x}\wedge \d{y}.$$
\end{exa}
\begin{df}Let $f(x_1, x_2, \ldots , x_n)$ be a $0$-form in
$\reals^n$. The \negrito{exterior derivative} $\d{f}$ of $f$ is
$$\d{f} = \dsum _{i = 1} ^n \dfrac{\partial f}{\partial x_i}\d{x_i}. $$
Furthermore, if $$ \omega = f(x_1, x_2, \ldots , x_n) \d{x_{j_1}}
\wedge \d{x_{j_2}} \wedge \cdots \wedge \d{x_{j_k}}
$$is a $k$-form in $\reals^n$, the \negrito{exterior derivative} $\d{\omega}$ of $\omega$ is the $(k +
1 )$-form
$$ \d{\omega} = \d{f(x_1, x_2, \ldots , x_n)} \wedge \d{x_{j_1}} \wedge
\d{x_{j_2}} \wedge \cdots \wedge \d{x_{j_k}}.
$$
\end{df}
\begin{exa}
If in $\reals^2$, $\omega = x^3y^4$, then
$$\d (x^3y^4) = 3x^2y^4\d{x}+ 4x^3y^3\d{y}.$$
\end{exa}
\begin{exa}
If in $\reals^2$, $\omega = x^2y\d{x}+ x^3y^4\d{y}$ then
$$\begin{array}{lll}
\d{\omega} & = & \d (x^2y\d{x}+ x^3y^4\d{y}) \\
& = & (2xy\d{x}+ x^2\d{y})\wedge \d{x}+ (3x^2y^4\d{x}+ 4x^3y^3\d{y})\wedge \d{y} \\
& = & x^2 \d{y} \wedge \d{x}+ 3x^2y^4\d{x}\wedge \d{y} \\
& = & (3x^2y^4 - x^2)\d{x}\wedge \d{y} \\
\end{array}$$
\end{exa}
\begin{exa}
Consider the change of variables $x = u + v, y = uv$. Then
$$\d{x}= \d{u}+\d{v},$$
$$\d{y} = v\d{u}+ u\d v,$$whence
$$\d{x}\wedge \d{y} = (u - v) \d{u}\wedge\d{v}.$$
\end{exa}
\begin{exa}
Consider the transformation of coordinates $xyz$ into $uvw$
coordinates given by
$$u = x + y + z,\ v = \dfrac{z}{y + z},\ w = \dfrac{y + z}{x + y + z}.$$
Then
$$\d{u}= \d{x}+ \d{y} + \d{z},$$
$$\d v = -\dfrac{z}{(y + z)^2}\d{y} + \dfrac{y}{(y + z)^2}\d{z},
$$
$$\d{w} =
-\dfrac{y + z}{(x + y + z)^2}\d{x}+ \dfrac{x}{(x + y + z)^2}\d{y} +
\dfrac{x}{(x + y + z)^2}\d{z}.$$ Multiplication gives
$$\everymath{\displaystyle}{\begin{array}{lll}\d{u}\wedge\d{v} \wedge \d{w} & = & \left(-\dfrac{zx}{(y + z)^2(x + y + z)^2} -
\dfrac{y(y + z)}{(y + z)^2(x + y + z)^2} \right. \\
& & \qquad \left. + \dfrac{z(y + z)}{(y + z)^2(x + y + z)^2} -
\dfrac{xy}{(y + z)^2(x + y + z)^2} \right)\d{x}\wedge \d{y} \wedge
\d{z}
\\ &
= &\dfrac{z^2 - y^2 - zx - xy}{(y + z)^2(x + y + z)^2}\d{x}\wedge
\d{y} \wedge \d{z}. \end{array}}$$
\end{exa}
\section{Integrating Differential Forms}
Let
\[\omega=\dsum_{i_1 < \cdots < i_k} a_{i_1,\dots,i_k}({\vector{x}})\,dx^{i_1} \wedge \ldots \wedge dx^{i_k}\]
be a differential form and $M$ a differentiable-manifold over
which we
wish to integrate, where $M$ has the parameterization
\[M({\vector{u}})=(x^1({\vector{u}}),\dots,x^k({\vector{u}}))\]
for in the parameter $\vector{u}$ domain $D$ . Then defines the integral of the
differential form over as
\[\int_S \omega =\int_D \dsum_{i_1 < \cdots < i_k} a_{i_1,\dots,i_k}(M({\vector{u}})) \frac{\partial(x^{i_1},\dots,x^{i_k})}{\partial(u^{1},\dots,u^{k})}\,du^1 \cdots du^k,\]
where the integral on the right-hand side is the standard Riemann integral over $D$, and
\[\frac{\partial(x^{i_1},\dots,x^{i_k})}{\partial(u^{1},\dots,u^{k})}\]
is the determinant of the Jacobian.
\section{Zero-Manifolds }
\begin{df}
A {$0$-dimensional oriented manifold of $\reals^n$} is simply
a point $\point{x}\in \reals^n$, with a choice of the $+$ or $-$
sign. A general oriented $0$-manifold is a union of oriented points.
\end{df}
\begin{df}
Let $M = +\{\point{b}\} \cup -\{\point{a}\}$ be an oriented
$0$-manifold, and let $\omega$ be a $0$-form. Then
$$ \dint _M \omega = \omega (\point{b}) - \omega (\point{a}). $$
\end{df}
\begin{rem}$-\point{x}$ has opposite orientation to $+\point{x}$ and
$$ \dint _{-\point{x}} \omega = -\dint _{+\point{x}} \omega . $$
\end{rem}
\begin{exa}
Let $M = -\{(1,0,0)\} \cup +\{(1,2,3)\} \cup
-\{(0,-2,0)\}$\footnote{Do not confuse, say, $-\{(1,0,0)\}$ with
$-(1,0,0) = (-1,0,0)$. The first one means that the point
$(1,0,0)$ is given negative orientation, the second means that
$(-1,0,0)$ is the additive inverse of $(1,0,0)$. } be an oriented
$0$-manifold, and let $\omega = x + 2y + z^2$. Then
$$\dint _M\omega = -\omega ((1,0,0)) + \omega (1,2,3) - \omega (0,0,3) = -(1) + (14) - (-4) = 17. $$
\end{exa}
\section{One-Manifolds}
\begin{df}
A \textbf{$1$-dimensional oriented manifold of $\reals^n$} is simply
an oriented smooth curve $\Gamma\in \reals^n$, with a choice of a
$+$ orientation if the curve traverses in the direction of
increasing $t$, or with a choice of a $-$ sign if the curve
traverses in the direction of decreasing $t$. A general oriented
$1$-manifold is a union of oriented curves.
\end{df}
\begin{rem}The curve $-\Gamma$ has opposite orientation to $\Gamma$ and
$$ \dint _{-\Gamma} \omega = -\dint _\Gamma \omega . $$If $\vector{f}:\reals ^2 \to \reals
^2$ and if $\d{\vector{r}} = \colvec{\d{x}\\ \d{y}}$, the classical
way of writing this is $$ \dint _{\Gamma} \vector{f}\cdot
\d{\vector{r}}.
$$
\end{rem}
We now turn to the problem of integrating $1$-forms.
\begin{exa}
Calculate
$$\dint _\Gamma xy\d{x} + (x + y)\d{y}$$ where $\Gamma$ is the parabola
$y = x^2, \ x \in [-1; 2]$ oriented in the positive direction.
\end{exa}
\begin{solu} We parametrise the curve as $x = t, y = t^2$. Then
$$xy\d{x} + (x + y)\d{y} = t^3\d{t} + (t + t^2)\d{t^2} = (3t^3 + 2t^2)\d{t}, $$
whence
$$\begin{array}{lll}
\dint _{\Gamma} \omega & = & \dint _{-1} ^2 (3t^3 + 2t^2)\d{t} \\
& = & \left[\dfrac{2}{3}t^3 + \dfrac{3}{4}t^4\right] _{-1} ^2\\ &
= & \dfrac{69}{4}.
\end{array}$$
What would happen if we had given the curve above a different
parametrisation? First observe that the curve travels from
$(-1,1)$ to $(2,4)$ on the parabola $y = x^2$. These conditions
are met with the parametrisation $x = \sqrt{t} - 1, y =
(\sqrt{t}-1)^2$, $t\in [0; 9]$. Then
$$\begin{array}{lll}xy\d{x} + (x + y)\d{y} & = & (\sqrt{t}-1)^3\d{(\sqrt{t}-1)} + ((\sqrt{t}-1) + (\sqrt{t}-1)^2)\d{(\sqrt{t}-1)^2}\\
& = & (3(\sqrt{t}-1)^3 + 2(\sqrt{t}-1)^2)\d{(\sqrt{t} - 1)} \\
& = & \dfrac{1}{2\sqrt{t}}(3(\sqrt{t}-1)^3 +
2(\sqrt{t}-1)^2)\d{t},
\end{array}$$ whence
$$\begin{array}{lll}
\dint _{\Gamma} \omega & = & \dint _{0} ^9 \dfrac{1}{2\sqrt{t}}(3(\sqrt{t}-1)^3 + 2(\sqrt{t}-1)^2)\d{t} \\
& = &
\left[\frac{3t^2}{4}-\frac{7t^{3/2}}{3}+\frac{5t}{2}-\sqrt{t}\right]
_{0} ^9\\[1ex] & = & \dfrac{69}{4},\\
\end{array}$$as before.
\end{solu}
\begin{rem}
It turns out that if two different parametrisations of the same
curve have the same orientation, then their integrals are equal.
Hence, we only need to worry about finding a suitable
parametrisation.
\end{rem}
\begin{exa}
Calculate the line integral $$\dint _{\Gamma} y\sin x\d{x}+ x\cos y\d{y} ,$$ where $\Gamma$ is the line
segment from $(0, 0)$ to $(1, 1)$ in the positive direction.
\end{exa}
\begin{solu} This line has equation $y = x$, so we choose the parametrisation $x = y = t$. The integral is thus
$$\begin{array}{lll}
\dint _{\Gamma} y\sin x\d{x}+ x\cos y\d{y} & = & \dint _0 ^1
(t\sin t + t\cos t)\d t \\
& = & [t(\sin x - \cos t)]_0 ^1 - \dint _0 ^1
(\sin t - \cos t)\d t\\
& = & 2\sin 1 - 1,
\end{array}$$upon integrating by parts.
\end{solu}
\begin{exa}
Calculate the path integral $$\dint _{\Gamma} \dfrac{x + y}{x^2 + y^2} \ \ \d{y} + \dfrac{x - y}{x^2 +
y^2}\ \ \d{x}$$around the closed square $\Gamma = ABCD$ with $A
= (1, 1)$, $B = (-1, 1)$, $C = (-1, -1)$, and $D = (1, -1)$ in the
direction $ABCDA$.
\end{exa}
\begin{solu} On $AB$, $y=1, \d{y} = 0$, on $BC$, $x = -1, \d{x} =
0$, on $CD$, $y = -1, \d{y} = 0$, and on $DA$, $x = 1, \d{x} =
0$. The integral is thus
\renewcommand{\arraystretch}{2}
$$\begin{array}{lll}
\dint _{\Gamma} \omega & = & \dint _{AB} \omega + \dint _{BC} \omega
+
\dint _{CD} \omega + \dint _{DA} \omega \\
& = & \dint ^{-1} _1 \dfrac{x - 1}{x^2 + 1}\ \d{x}+ \dint ^{-1} _1
\dfrac{y - 1}{y^2 + 1}\ \d{y} + \dint _{-1} ^1 \dfrac{x + 1}{x^2 +
1}\ \d{x}+ \dint _{-1} ^1 \dfrac{y + 1}{y^2 + 1}\
\d{y} \\
& = & 4 \dint _{-1} ^1 \dfrac{1}{x^2 + 1}\ \d{x}\\
& = & 4\arctan x|_{-1} ^1 \\ & = & 2\pi .
\end{array}$$
\end{solu}
\begin{rem}
When the integral is along a closed path, like in the preceding
example, it is customary to use the symbol $\ \doint _\Gamma$
rather than $\dint_\Gamma$. The positive direction of integration
is that sense that when traversing the path, the area enclosed by
the curve is to the left of the curve.
\end{rem}
\begin{exa}
Calculate the path integral $$\doint _{\Gamma} x^2\d{y} + y^2\d{x},$$where $\Gamma$ is the ellipse
$\dis{9x^2 + 4y^2 = 36}$
traversed once in the positive sense. \end{exa} \begin{solu}
Parametrise the ellipse as $x = 2\cos t, y = 3\sin t, t\in [0;
2\pi]$. Observe that when traversing this closed curve, the area of
the ellipse is on the left hand side of the path, so this
parametrisation traverses the curve in the positive sense. We have
$$\begin{array}{lll}
\doint _{\Gamma} \omega & = & \dint _0 ^{2\pi} ((4\cos^2t)(3\cos t)
+
(9\sin t)(-2\sin t) )\d t \\
& = & \dint _0 ^{2\pi} (12\cos^3t - 18\sin^3t) \d t \\
& = & 0.
\end{array}$$
\end{solu}
\begin{df}
Let $\Gamma$ be a smooth curve. The integral $$\dint \limits_\Gamma f(\point{x}) \norm{\d{\point{x}}}
$$is called the \negrito{path integral of $f$ along $\Gamma$.}
\end{df}
\begin{exa}\label{exa:int_along_a_length}
Find $\dint \limits_\Gamma x \norm{\d{\point{x}}} $ where $\Gamma$
is the triangle starting at $A:(-1,-1)$ to $B:(2,-2)$, and ending
in $C:(1,2)$.
\end{exa}\begin{solu} The lines passing through the given points have
equations $L_{AB}: y = \dfrac{-x - 4}{3}$, and $L_{BC}: y = -4x +
6$. On $L_{AB}$ $$ x\norm{\d{\point{x}}} = x\sqrt{(\d{x})^2 +
(\d{y})^2} = x\sqrt{1 + \left(-\dfrac{1}{3}\right)^2}\d{x} =
\dfrac{x\sqrt{10}\d{x}}{3},
$$and on $L_{BC}$
$$ x\norm{\d{\point{x}}} = x\sqrt{(\d{x})^2 +
(\d{y})^2} = x(\sqrt{1 + \left(-4\right)^2})\d{x} =
x\sqrt{17}\d{x}.
$$Hence
$$\begin{array}{lll}\dint \limits_\Gamma x \norm{\d{\point{x}}} & = & \dint \limits_{L_{AB}} x \norm{\d{\point{x}}} + \dint \limits_{L_{BC}} x \norm{\d{\point{x}}} \\
& = & \dint _{-1} ^2 \dfrac{x\sqrt{10}\d{x}}{3} + \dint _2 ^1
x\sqrt{17}\d{x} \\
& = & \dfrac{\sqrt{10}}{2} - \dfrac{3\sqrt{17}}{2}.
\end{array}
$$
\end{solu}
\vspace*{2cm}
\begin{figure}[htpb]
$$ \psset{unit=2pc}\renewcommand{\pshlabel}[1]{{\tiny
#1}}
\renewcommand{\psvlabel}[1]{{\tiny #1}} \psaxes(0,0)(-3,-3)(3,3)
\psdots[dotscale=1, dotstyle=*](-1,-1)(2,-2)(1,2)
\psline(-1,-1)(2,-2)(1,2)
$$ \vspace*{2cm}\hangcaption{Example \ref{exa:int_along_a_length}. } \label{fig:int_along_a_length}
\end{figure}
\section*{\psframebox{Homework}}
\begin{multicols}{2}\columnseprule 1pt \columnsep 25pt\multicoltolerance=900
\begin{problem}
Consider $\dint _C x\d{x}+y\d{y}$ and $\dint _C xy
\norm{\d{\point{x}}} $.
\begin{enumerate}
\item Evaluate $\dint _C x\d{x}+y\d{y}$ where $C$ is the straight line path that starts at $(-1,0)$ goes to $(0,1)$ and ends at $(1,0)$, by parametrising this
path. Calculate also $\dint _C xy \norm{\d{\point{x}}} $ using this
parametrisation.
\item Evaluate $\dint _C x\d{x}+yd{y}$ where $C$ is the semicircle that starts at $(-1,0)$ goes to $(0,1)$ and ends at $(1,0)$, by parametrising this
path. Calculate also $\dint _C xy \norm{\d{\point{x}}} $ using this
parametrisation.
\end{enumerate}
\begin{answer}
\noindent
\begin{enumerate}
\item Let $L_1: y =x+1$, $L_2: -x+1$. Then
$$
\begin{array}{lll}
\dint _C x\d{x}+y\d{y} & = & \dint _{L_1} x\d{x}+y\d{y}+\dint _{L_2}
x\d{x}+y\d{y}\\
& = & \dint _{-1} ^1 x\d{x} (x+1)\d{x} + \dint _0 ^1 x\d{x}
-(-x+1)\d{x}\\
& = & 0.
\end{array}
$$
Also, both on $L_1$ and on $L_2$ we have
$\norm{\d{\point{x}}}=\sqrt{2}\d{x}$, thus
$$
\begin{array}{lll}
\dint _C xy \norm{\d{\point{x}}}& = & \dint _{L_1}xy
\norm{\d{\point{x}}}+\dint _{L_2}
xy \norm{\d{\point{x}}}\\
& = & \sqrt{2}\dint _{-1} ^1 x(x+1)\d{x} - \sqrt{2}\dint _0 ^1 x(-x+1)\d{x}\\
& = & 0.
\end{array}
$$
\item We put $x=\sin t$, $y = \cos t$, $t\in\lcrc{-\frac{\pi}{2}}{\frac{\pi}{2}}$. Then
$$
\begin{array}{lll}
\dint _C x\d{x}+y\d{y} & = & \dint _{-\pi/2} ^{\pi/2}
(\sin t)(\cos t)\d{t}-(\cos t)(\sin t)\d{t}\\
& = & 0.
\end{array}
$$
Also, $\norm{\d{\point{x}}}=\sqrt{(\cos t)^2+(-\sin
t)^2}\d{t}=\d{t}$, and thus
$$
\begin{array}{lll}
\dint _C xy \norm{\d{\point{x}}}& = & \dint _{-\pi/2} ^{\pi/2} (\sin
t)(\cos t) \d{t}\\
& = & \dfrac{(\sin t)^2}{2}\Big| _{-\pi/2} ^{\pi/2} \\
& = & 0.
\end{array}
$$
\end{enumerate}
\end{answer}
\end{problem}
\begin{problem}
\label{pro:path-integral} Find $\dint _{\Gamma} x\d{x} + y\d{y} $
where $\Gamma$ is the path shewn in figure \ref{fig:path-integral},
starting at $O(0,0)$ going on a straight line to $A\left(4\cos
\tfrac{\pi}{6}, 4\sin \tfrac{\pi}{6}\right)$ and continuing on an
arc of a circle to $B\left(4\cos \tfrac{\pi}{5}, 4\sin
\tfrac{\pi}{5}\right)$.
\begin{answer}
Let $\Gamma _1$ denote the straight line segment path from $O$ to
$A=(2\sqrt{3},2)$ and $\Gamma _2$ denote the arc of the circle
centred at $(0,0)$ and radius $4$ going counterclockwise from
$\theta=\dfrac{\pi}{6}$ to $\theta=\dfrac{\pi}{5}$.
\bigskip
Observe that the Cartesian equation of the line $\line{OA}$ is $y
=\dfrac{x}{\sqrt{3}}$. Then on $\Gamma _1$
$$x\d{x} + y\d{y} = x\d{x}+ \dfrac{x}{\sqrt{3}}\d{\dfrac{x}{\sqrt{3}}} = \dfrac{4}{3}x\d{x}.$$
Hence $$\dint _{\Gamma _1} x\d{x} + y\d{y} = \dint _0 ^{2\sqrt{3}}
\dfrac{4}{3}x\d{x} = 8.
$$
On the arc of the circle we may put $x=4\cos \theta$, $y = 4\sin
\theta$ and integrate from $\theta = \dfrac{\pi}{6}$ to $\theta =
\dfrac{\pi}{5}$. Observe that there
$$ x\d{x} + y\d{y} = (\cos \theta )\d{\cos \theta} +(\sin\theta)\d{\sin \theta} = -\sin\theta\cos\theta\d{\theta}+\sin\theta\cos\theta\d{\theta}=0,$$
and since the integrand is $0$, the integral will be zero.
\bigskip
Assembling these two pieces,
$$\dint _{\Gamma} x\d{x} + y\d{y} = \dint _{\Gamma _1} x\d{x} + y\d{y} +\dint _{\Gamma _2} x\d{x} + y\d{y}=8+0=8. $$
\bigskip
Using the parametrisations from the solution of problem
\ref{pro:path-integral2}, we find on $\Gamma _1$ that
$$ x\norm{\d{\point{x}}} = x\sqrt{(\d{x})^2+ (\d{y})^2} =x\sqrt{1+\dfrac{1}{3}}\d{x}=\dfrac{2}{\sqrt{3}}x\d{x}, $$
whence
$$ \dint _{\Gamma _1} x\norm{\d{\point{x}}} = \dint _0 ^{2\sqrt{3}}
\dfrac{2}{\sqrt{3}}x\d{x} = 4\sqrt{3}. $$ On $\Gamma _2$ that
$$ x\norm{\d{\point{x}}} = x\sqrt{(\d{x})^2+ (\d{y})^2} =16\cos \theta\sqrt{\sin^2\theta + \cos^2\theta}\d{\theta}=16\cos\theta\d{\theta}, $$
whence
$$ \dint _{\Gamma _2} x\norm{\d{\point{x}}} = \dint _{\pi /6} ^{\pi /5}
16\cos\theta\d{\theta} = 16\sin \dfrac{\pi}{5} -16\sin
\dfrac{\pi}{6}= 4\sin \dfrac{\pi}{5}-8.
$$Assembling these we gather that
$$ \dint _{\Gamma } x\norm{\d{\point{x}}} =\dint _{\Gamma _1} x\norm{\d{\point{x}}}+\dint _{\Gamma _2}
x\norm{\d{\point{x}}}= 4\sqrt{3}-8+16\sin \dfrac{\pi}{5}.$$
\end{answer}
\end{problem}
\begin{problem}
Find $\doint _\Gamma z\d{x} + x\d{y} + y\d{z}$ where $\Gamma$ is the
intersection of the sphere $x^2 + y^2 + z^2 = 1$ and the plane $x +
y = 1$, traversed in the positive direction. \begin{answer} The
curve lies on the sphere, and to parametrise this curve, we dispose
of one of the variables, $y$ say, from where $y = 1-x$ and $x^2 +
y^2 + z^2 = 1$ give
$$\begin{array}{lll}x^2 + (1 - x)^2 + z^2 = 1 & \implies & 2x^2 -2x + z^2 = 0\\ & \implies & 2\left(x - \frac{1}{2}\right)^2 + z^2 = \frac{1}{2}\\
& \implies & 4\left(x - \frac{1}{2}\right)^2 + 2z^2 =
1.\end{array}$$ So we now put $$x = \frac{1}{2} + \frac{\cos t}{2},
\ \ \ z = \dfrac{\sin t}{\sqrt{2}},\ \ \ y = 1 - x =
\frac{1}{2}-\frac{\cos t}{2}.
$$We must integrate on the side of the plane that can be viewed
from the point $(1,1,0)$ (observe that the vector $\colvec{1\\ 1 \\
0}$ is normal to the plane). On the $zx$-plane, $4\left(x -
\frac{1}{2}\right)^2 + 2z^2 = 1$ is an ellipse. To obtain a positive
parametrisation we must integrate from $t = 2\pi$ to $t = 0$ (this
is because when you look at the ellipse from the point $(1,1,0)$ the
positive $x$-axis is to your left, and not your right). Thus
$$\begin{array}{lll}\doint _\Gamma z\d{x} + x\d{y} + y\d{z} & = &
\dint ^0 _{2\pi} \dfrac{\sin
t}{\sqrt{2}} \d{\left( \frac{1}{2} + \frac{\cos t}{2}\right)} \\
& & + \dint ^0 _{2\pi} \left( \frac{1}{2} + \frac{\cos
t}{2}\right)\d{\left(\frac{1}{2} -\frac{\cos t}{2}\right)} \\ & & +
\dint ^0 _{2\pi} \left(\frac{1}{2} -\frac{\cos
t}{2}\right)\d{\left(\dfrac{\sin t}{\sqrt{2}}\right)} \\
& = & \dint ^0 _{2\pi} \left(\frac{\sin t}{4}+ \frac{\cos
t}{2\sqrt{2}}+ \frac{\cos t\sin t}{4} -
\frac{1}{2\sqrt{2}}\right)\ \d{t} \\
& = & \dfrac{\pi}{\sqrt{2}}.
\end{array}$$
\end{answer}
\end{problem}
\end{multicols}
\section{Closed and Exact Forms}
\begin{lemma}[Poincar\'{e} Lemma] \label{thm:poincare_lemma}
If $\omega$ is a $p$-differential form of continuously
differentiable functions in $\reals^n$ then $$ \d{(\d{\omega})} =
0.
$$
\end{lemma}
\begin{proof}
We will prove this by induction on $p$. For $p= 0$ if
$$\omega = f(x_1, x_2, \ldots , x_n) $$
then
$$\d{\omega} = \dsum _{k = 1} ^n \frac{\partial f}{\partial x_k}\d{x_k} $$
and
$$\begin{array} {lll}\d{(\d{\omega})} & = & \dsum _{k = 1} ^n \d{\left(\frac{\partial f}{\partial x_k}\right)}\wedge\d{x_k} \\
& = & \dsum _{k = 1} ^n \left(\dsum _{j = 1} ^n \frac{\partial ^2
f}{\partial x_j\partial x_k} \wedge \d{x_j}\right)\wedge\d{x_k}\\
& = & \dsum _{1 \leq j \leq k \leq n} ^n \left(\frac{\partial ^2
f}{\partial x_j\partial x_k} - \frac{\partial ^2
f}{\partial x_k\partial x_j} \right)\d{x_j}\wedge\d{x_k}\\
& = & 0,
\end{array}$$
since $\omega$ is continuously differentiable and so the mixed
partial derivatives are equal. Consider now an arbitrary $p$-form,
$p>0$. Since such a form can be written as
$$\omega = \dsum _{ 1 \leq j_1 \leq j_2 \leq \cdots \leq j_p \leq n} a_{j_1j_2\ldots j_p}\d{x_{j_1}} \wedge \d{x_{j_2}} \wedge \cdots \d{x_{j_p}},
$$where the $a_{j_1j_2\ldots j_p}$ are continuous differentiable
functions in $\reals^n$, we have
$$\begin{array}{lll}\d{\omega} & = & \dsum _{ 1 \leq j_1 \leq j_2 \leq \cdots \leq j_p \leq n} \d{a_{j_1j_2\ldots j_p}} \wedge \d{x_{j_1}} \wedge \d{x_{j_2}} \wedge \cdots
\d{x_{j_p}}\\
& = & \dsum _{ 1 \leq j_1 \leq j_2 \leq \cdots \leq j_p \leq n}
\left(\dsum _{i=1} ^n \frac{\partial a_{j_1j_2\ldots j_p}}{\partial
x_i}\d{x_i}\right) \wedge \d{x_{j_1}} \wedge \d{x_{j_2}} \wedge
\cdots \d{x_{j_p}}, \end{array}
$$
it is enough to prove that for each summand
$$\d{\left(\d{a} \wedge\d{x_{j_1}} \wedge \d{x_{j_2}} \wedge \cdots \d{x_{j_p}}\right)} = 0.$$
But $$\begin{array}{lll}\d{\left(\d{a}\wedge\d{x_{j_1}} \wedge
\d{x_{j_2}} \wedge \cdots \d{x_{j_p}}\right)} & = &
\d{\d{a}}\wedge \left(\d{x_{j_1}} \wedge \d{x_{j_2}} \wedge \cdots
\d{x_{j_p}}\right) \\ & & \qquad + \d{a}\wedge
\d{\left(\d{x_{j_1}} \wedge \d{x_{j_2}} \wedge \cdots
\d{x_{j_p}}\right)}\\ & = & \d{a}\wedge \d{\left(\d{x_{j_1}}
\wedge \d{x_{j_2}} \wedge \cdots \d{x_{j_p}}\right)},
\end{array} $$ since $\d{\d{a}} = 0$ from the case $p=0$. But an
independent induction argument proves that
$$ \d{\left(\d{x_{j_1}}
\wedge \d{x_{j_2}} \wedge \cdots \d{x_{j_p}}\right)}=0,$$
completing the proof.
\end{proof}
\begin{df}
A differential form $\omega$ is said to be \negrito{exact} if there is
a continuously differentiable function $F$ such that
$$\d F = \omega .$$
\end{df}
\begin{exa}
The differential form $$x\d{x}+ y\d{y} $$is exact, since
$$x\d{x}+ y\d{y} = \d \left(\dfrac{1}{2}(x^2 + y^2)\right) . $$
\end{exa}
\begin{exa}
The differential form $$y\d{x}+ x\d{y} $$is exact, since
$$y\d{x}+ x\d{y} = \d \left(xy\right) . $$
\end{exa}
\begin{exa}
The differential form $$\dfrac{x}{x^2 + y^2}\d{x}+ \dfrac{y}{x^2 +
y^2}\d{y}
$$is exact, since
$$\dfrac{x}{x^2 + y^2}\d{x}+ \dfrac{y}{x^2 + y^2}\d{y} = \d \left(\dfrac{1}{2}\log_e (x^2 + y^2)\right) . $$
\end{exa}
\begin{rem}
Let $\omega = \d{F}$ be an exact form. By the Poincar\'{e} Lemma
Theorem \ref{thm:poincare_lemma}, $\d{\omega} = \d{\d{F}} = 0$. A
result of Poincar\'{e} says that for certain domains (called \negrito{
star-shaped domains}) the converse is also true, that is, if
$\d{\omega} = 0$ on a star-shaped domain then $\omega$ is exact.
\end{rem}\begin{exa} Determine whether the differential form $$\omega =
\dfrac{2x(1 - e^y)}{(1 + x^2)^2}\d{x}+ \dfrac{e^y}{1 + x^2}\d{y}$$
is exact.
\end{exa}
\begin{solu} Assume there is a function $F$ such that
$$\d F = \omega .$$By the Chain Rule
$$\d F = \dfrac{\partial F}{\partial x}\d{x}+ \dfrac{\partial F}{\partial y}\d{y} .$$
This demands that
$$\dfrac{\partial F}{\partial x} = \dfrac{2x(1 -
e^y)}{(1 + x^2)^2},$$
$$\dfrac{\partial F}{\partial y} = \dfrac{e^y}{1 + x^2}.$$
We have a choice here of integrating either the first, or the
second expression. Since integrating the second expression (with
respect to $y$) is easier, we find
$$F(x, y) = \dfrac{e^y}{1 + x^2} + \phi (x),$$where $\phi (x)$ is a
function depending only on $x$. To find it, we differentiate the
obtained expression for $F$ with respect to $x$ and find
$$\dfrac{\partial F}{\partial x} = -\dfrac{2xe^y}{(1 + x^2)^2} + \phi '(x).$$Comparing this with our first
expression for $\dfrac{\partial F}{\partial x}$, we find
$$\phi '(x) = \dfrac{2x}{(1 + x^2)^2}, $$that is
$$\phi (x) = -\dfrac{1}{1 + x^2} + c,$$where $c$ is a constant.
We then take
$$F(x, y) = \dfrac{e^y - 1}{1 + x^2} + c.$$
\end{solu}
\begin{exa}
Is there a continuously differentiable function such that $$ \d{F}
= \omega = y^2z^3 \d{x} + 2xyz^3\d{y} + 3xy^2z^2\d{z}\ \ ?
$$
\end{exa}
\begin{solu} We have $$\begin{array}{lll}\d{\omega} & = & (2yz^3\d{y} +
3y^2z^2\d{z})\wedge \d{x} \\ & & + (2yz^3\d{x} + 2xz^3\d{y} +
6xyz^2\d{z})\wedge \d{y} \\ & & +
(3y^2z^2\d{x} + 6xyz^2\d{y} + 6xy^2z\d{z})\wedge\d{z} \\
& = & 0, \end{array}$$ so this form is exact in a star-shaped
domain. So put $$ \d{F} = \frac{\partial F}{\partial x}\d{x} +
\frac{\partial F}{\partial y}\d{y} + \frac{\partial F}{\partial
z}\d{z} = y^2z^3 \d{x} + 2xyz^3\d{y} + 3xy^2z^2\d{z}.
$$Then $$\frac{\partial F}{\partial x} = y^2z^3 \implies F = xy^2z^3 + a(y,z), $$
$$\frac{\partial F}{\partial y} = 2xyz^3\implies F = xy^2z^3 + b(x,z), $$
$$\frac{\partial F}{\partial z} = 3xy^2z^2 \implies F = xy^2z^3 + c(x,y), $$
Comparing these three expressions for $F$, we obtain $F(x,y,z) =
xy^2z^3$.
\end{solu}
We have the following equivalent of the Fundamental
Theorem of Calculus.
\begin{thm}\label{thm:exact_forms}
Let $U \subseteq \reals^n$ be an open set. Assume $\omega = \d F$ is an exact form, and $\Gamma$ a path in $U$ with starting
point $A$ and endpoint $B$. Then
$$\dint _{\Gamma} \omega = \dint _{A} ^B \d F = F(B) - F(A).
$$In particular, if $\Gamma $ is a simple closed path, then
$$\doint _{\Gamma} \omega = 0.$$
\end{thm}
\begin{exa}
Evaluate the integral $$\doint\limits_\Gamma \dfrac{2x}{x^2 +
y^2}\d{x} + \dfrac{2y}{x^2 + y^2}\ \d{y}
$$ where $\Gamma$ is the closed polygon with vertices at $A=(0,0)$, $B=(5,0)$, $C=(7,2)$, $D= (3,2)$, $E=(1,1)$, traversed in the order
$ABCDEA$.
\end{exa}
\begin{solu}Observe that $$ \d{\left(\dfrac{2x}{x^2 + y^2}\d{x} +
\dfrac{2y}{x^2 + y^2}\ \d{y}\right)} = -\dfrac{4xy}{(x^2 +
y^2)^2}\d{y} \wedge \d{x} -\dfrac{4xy}{(x^2 + y^2)^2}\d{x} \wedge
\d{y} =0,
$$and so the form is exact in a start-shaped domain. By virtue of Theorem
\ref{thm:exact_forms}, the integral is $0$.
\end{solu}
\begin{exa}
Calculate the path integral $$\doint _{\Gamma} (x^2 - y)\d{x}+ (y^2 -
x)\d{y},$$ where $\Gamma$ is a loop of $\dis{ x^3 + y^3 - 2xy = 0}$
traversed once in the positive sense.
\end{exa}\begin{solu} Since
$$\dfrac{\partial}{\partial y} (x^2 - y) = -1 =
\dfrac{\partial}{\partial x} (y^2 - x), $$the form is exact, and
since this is a closed simple path, the integral is $0$.
\end{solu}
\section{Two-Manifolds}
\begin{df}
A \textbf{$2$-dimensional oriented manifold of $\reals^2$} is simply
an open set (region) $D\in \reals^2$, where the $+$ orientation is
counter-clockwise and the $-$ orientation is clockwise. A general
oriented $2$-manifold is a union of open sets.
\end{df}
\begin{rem}The region $-D$ has opposite orientation to $D$ and
$$ \dint _{-D} \omega = -\dint _D \omega . $$ We will often write
$$\dint _Df(x,y)\d{A} $$ where $\d{A}$ denotes the \negrito{area
element}.
\end{rem}
\begin{rem}
In this section, unless otherwise noticed, we will choose the
positive orientation for the regions considered. This corresponds to
using the area form $\d{x} \d{y}$.
\end{rem}
Let $D \subseteq \reals^2$. Given a function $f:D \rightarrow
\reals$, the integral
$$\dint \limits_D f\d{A} $$is the sum of all the values of $f$ restricted to $D$. In particular,
$$\dint \limits_D \d{A}$$is the area of $D$.
\section{Three-Manifolds}
\begin{df}
A \textbf{$3$-dimensional oriented manifold of $\reals^3$} is simply
an open set (body) $V\in \reals^3$, where the $+$ orientation is in
the direction of the outward pointing normal to the body, and
the $-$ orientation is in the direction of the inward pointing normal to the body. A general
oriented $3$-manifold is a union of open sets.
\end{df}
\begin{rem}The region $-M$ has opposite orientation to $M$ and
$$ \dint _{-M} \omega = -\dint _M \omega . $$ We will often write
$$\dint _Mf\d{V} $$ where $\d{V}$ denotes the \negrito{volume
element}.
\end{rem}
\begin{rem}
In this section, unless otherwise noticed, we will choose the
positive orientation for the regions considered. This corresponds
to using the volume form $\d{x}\wedge \d{y}\wedge \d{z}$.
\end{rem}
Let $V \subseteq \reals^3$. Given a function $f:V \rightarrow
\reals$, the integral
$$\dint \limits_V f\d{V} $$is the sum of all the values of $f$ restricted to $V$. In particular,
$$\dint \limits_V \d{V} $$is the oriented volume of $V$.
\begin{exa}
Find $$\dint \limits_{[0;1]^3} \ x^2ye^{xyz} \ \d{V}.$$
\end{exa}
\begin{solu}The integral is
$$\begin{array}{lll}
\dint_0 ^1 \left(\dint_0 ^1 \left(\dint_0 ^1 x^2ye^{xyz}\
\d{z}\right)\d{y}\right) \d{x}& = & \dint_0 ^1 \left(\dint_0 ^1
x(e^{xy} - 1)\ \d{y}\right) \d{x}\\
& = & \dint_0 ^1 (e^x - x - 1) \d{x}\\
& = & e - \dfrac{5}{2}.
\end{array}$$
\end{solu}
s
\section{Surface Integrals}
\begin{df}
A \textbf{$2$-dimensional oriented manifold of $\reals^3$} is simply
a smooth surface $D\in \reals^3$, where the $+$ orientation is in
the direction of the outward normal pointing away from the origin
and the $-$ orientation is in the direction of the inward normal
pointing towards the origin. A general oriented $2$-manifold in
$\reals^3$ is a union of surfaces.
\end{df}
\begin{rem}The surface $-\Sigma$ has opposite orientation to $\Sigma$ and
$$ \dint _{-\Sigma} \omega = -\dint _\Sigma \omega . $$
\end{rem}
\begin{rem}
In this section, unless otherwise noticed, we will choose the
positive orientation for the regions considered. This corresponds
to using the ordered basis $$\{\d{y}\wedge \d{z}, \
\d{z}\wedge\d{x}, \ \d{x}\wedge\d{y}\}.$$
\end{rem}
\begin{df}
Let $f:\reals^3\rightarrow \reals$. The integral of $f$ over the
smooth surface $\Sigma$ (oriented in the positive sense) is given by
the expression $$\dint \limits_\Sigma f \norm{\d{ ^2\vector{x}}}.$$Here
$$\norm{\d{ ^2\vector{x}}} = \sqrt{(\d{x} \wedge \d{y})^2 + (\d{z} \wedge \d{x})^2 + (\d{y} \wedge \d{z})^2}$$
is the \negrito{surface area element}.
\end{df}
\begin{exa}
Evaluate $\dint \limits_\Sigma z\norm{\d{ ^2\vector{x}}}$ where
$\Sigma$ is the outer surface of the section of the paraboloid $z =
x^2 + y^2, 0 \leq z \leq 1.$
\end{exa}
\begin{solu} We parametrise the paraboloid as follows. Let $x = u, y = v, z
= u^2 + v^2.$ Observe that the domain $D$ of $\Sigma$ is the unit
disk $u^2 + v^2 \leq 1$. We see that
$$\d{x} \wedge \d{y} = \d{u}\wedge \d{v},$$
$$\d{y} \wedge \d{z} = -2u \d{u}\wedge \d{v}, $$
$$\d{z} \wedge \d{x} = -2v \d{u}\wedge \d{v},
$$and so
$$\norm{\d{ ^2\vector{x}}} = \sqrt{1 + 4u^2 + 4v^2}\d{u} \wedge \d{v} .$$
Now,
$$\dint \limits_\Sigma z \norm{\d{ ^2\vector{x}}}= \dint \limits_D (u^2 + v^2)\sqrt{1 + 4u^2 + 4v^2}\d{u}\d{v}.
$$To evaluate this last integral we use polar coordinates, and
so
$$\begin{array}{lll}\dint \limits_D (u^2 + v^2)\sqrt{1 + 4u^2 + 4v^2}\d{u}
\d{v} & = & \dint _0 ^{2\pi} \dint _0 ^1 \rho^3 \sqrt{1 +
4\rho^2} \d{\rho} \d{\theta} \\
& = & \dfrac{\pi}{12}(5\sqrt{5} + \dfrac{1}{5}).
\end{array}$$
\end{solu}
\begin{exa} Find the area of that part of the cylinder $x^2 +
y^2 = 2y$ lying inside the sphere $x^2+y^2+z^2=4$. \end{exa}
\begin{solu} We have $$x^2 + y^2 = 2y \iff x^2 + (y - 1)^2 = 1. $$
We parametrise the cylinder by putting $x = \cos u, y - 1 = \sin u$,
and $z = v$. Hence
$$\d{x} = -\sin u\d{u}, \ \d{y} = \cos u\d{u}, \ \d{z} = d{v}, $$
whence
$$\d{x} \wedge \d{y} = 0, \d{y} \wedge \d{z} = \cos u \d{u} \wedge \d{v},
\d{z} \wedge \d{x} = \sin u\d{u} \wedge \d{v}, $$ and so
$$\begin{array}{lll}\norm{\d{ ^2\vector{x}}} & = & \sqrt{(\d{x} \wedge \d{y})^2 + (\d{z} \wedge \d{x})^2 + (\d{y} \wedge \d{z})^2}\\ & = & \sqrt{\cos^2u + \sin^2u}\ \d{u}\wedge\d{v} \\
& = & \d{u}\wedge\d{v}.
\end{array}$$The cylinder and the sphere intersect when $x^2 + y^2 = 2y$
and $x^2 + y^2 + z^2 = 4$, that is, when $z^2 = 4 - 2y$, i.e. $v^2 =
4 - 2(1 + \sin u) = 2 - 2\sin u$. Also $ 0 \leq u \leq \pi.$ The
integral is thus
$$\begin{array}{lll} \dint \limits_\Sigma \norm{\d{ ^2\vector{x}}} & = & \dint _0 ^{\pi}\dint _{-\sqrt{2 - 2\sin u}} ^{\sqrt{2 - 2\sin u}} \d{v}\d{u} = \dint _0 ^{\pi} 2\sqrt{2 - 2\sin u } \d{u}\\
& = & 2\sqrt{2} \dint _0 ^{\pi} \sqrt{1 - \sin u} \ \d{u} \\
& = & 2\sqrt {2} \left( 4\sqrt {2}-4 \right) . \\
\end{array}
$$
\end{solu}
\begin{exa}
Evaluate $$\dint \limits_\Sigma x\d{y}\d{z} + (z^2 - zx) \d{z}
\d{x} - xy\d{x} \d{y},
$$where $\Sigma$ is the top side of the triangle with vertices at
$(2,0,0)$, $(0,2,0)$, $(0,0,4)$.
\end{exa}
\begin{solu} Observe that the plane passing through the three given points
has equation $2x + 2y + z = 4$. We project this plane onto the
coordinate axes obtaining
$$ \dint \limits_\Sigma x\d{y}\d{z} = \dint _0 ^4 \dint _0 ^{2 - z/2} (2-y-z/2) \d{y} \d{z} = \frac{8}{3}, $$
$$ \dint \limits_\Sigma (z^2 - zx)\d{z}\d{x} = \dint _0 ^2 \dint _0 ^{4-2x} (z^2-zx) \d{z} \d{x} = 8, $$
$$ -\dint \limits_\Sigma xy\d{x}\d{y} = -\dint _0 ^2 \dint _0 ^{2 - y} xy \d{x} \d{y} = -\frac{2}{3}, $$
and hence
$$\dint \limits_\Sigma x\d{y}\d{z} + (z^2 - zx)
\d{z} \d{x} - xy\d{x} \d{y} = 10.
$$
\end{solu}
\section*{\psframebox{Homework}}
\begin{problem}
Evaluate $\dint \limits_\Sigma y \norm{\d{ ^2\vector{x}}}$ where
$\Sigma$ is the surface $z = x + y^2, 0 \leq x \leq 1, 0 \leq y \leq
2.$ \begin{answer} We parametrise the surface by letting $x = u, y =
v, z = u + v^2.$ Observe that the domain $D$ of $\Sigma$ is the
square $[0; 1]\times [0; 2]$. Observe that
$$\d{x} \wedge \d{y}
= \d{u} \wedge \d{v} ,$$
$$\d{y} \wedge \d{z} = -\d{u} \wedge \d{v}, $$
$$\d{z} \wedge \d{x} = -2v\d{u} \wedge \d{v},
$$and so
$$\norm{\d{ ^2\vector{x}}} = \sqrt{2 + 4v^2}\d{u} \wedge \d{v}.$$
The integral becomes
$$\begin{array}{lll}
\dint \limits_\Sigma y \norm{\d{ ^2\vector{x}}} & = & \dint_0 ^2\dint _0
^1
v\sqrt{2 + 4v^2}\d{u}\d{v} \\
& = & \left(\dint_0 ^1 \d{u}\right) \left(\dint_0 ^2 y\sqrt{2 +
4v^2}\d{v}\right) \\
& = & \dfrac{13\sqrt{2}}{3}.
\end{array}$$
\end{answer}
\end{problem}
\begin{problem}
Consider the cone $z = \sqrt{x^2+y^2}$. Find the surface area of the
part of the cone which lies between the planes $z = 1$ and $z = 2$.
\begin{answer}
Using $x=r\cos \theta$, $y=r\sin \theta$, $1\leq r \leq 2$, $0 \leq
\theta \leq 2\pi$, the surface area is
$$ \sqrt{2}\dint _0 ^{2\pi}\dint _1 ^2 r\d{r}\d{\theta}=3\pi\sqrt{2}. $$
\end{answer}
\end{problem}
\begin{problem}
Evaluate $\dint \limits_\Sigma x^2 \norm{\d{ ^2\vector{x}}}$ where
$\Sigma$ is the surface of the unit sphere $x^2 + y^2 + z^2 = 1.$
\begin{answer} We use spherical coordinates, $(x, y, z) =
(\cos\theta\sin\phi, \sin\theta\sin\phi, \cos\phi)$. Here $\theta
\in [0; 2\pi]$ is the latitude and $\phi \in [0; \pi]$ is the
longitude. Observe that
$$\d{x}\wedge\d{y}=
\sin\phi\cos\phi \d{\phi}\wedge\d{\theta} ,$$
$$\d{y}\wedge\d{z} = \cos\theta\sin^2\phi \d{\phi}\wedge\d{\theta},
$$
$$\d{z}\wedge\d{x}= -\sin\theta\sin^2\phi \d{\phi}\wedge\d{\theta},
$$and so
$$\norm{\d{ ^2 \vector{x}}} = \sin\phi \d{\phi}\wedge\d{\theta}.$$
The integral becomes
$$\begin{array}{lll}
\dint \limits_\Sigma x^2 \norm{\d{ ^2\vector{x}}} & = & \dint _0 ^{2\pi}
\dint _{0} ^{\pi} \cos^2\theta\sin^3\phi \d{\phi} \d{\theta} \\
& = & \dfrac{4\pi}{3}.
\end{array}$$
\end{answer}
\end{problem}
\begin{problem}
Evaluate $\dint _S z\norm{\d{ ^2\vector{x}}}$ over the conical surface
$z=\sqrt{x^2 + y^2}$ between $z=0$ and $z=1$. \begin{answer} Put $x
= u, y = v, z^2 = u^2 + v^2$. Then
$$\d{x} = \d{u}, \ \d{y} = \d{v}, \ z\d{z} = u\d{u} + v\d{v}, $$
whence
$$\d{x} \wedge \d{y} = \d{u} \wedge \d{v}, \d{y} \wedge \d{z} = -\dfrac{u}{z} \d{u} \wedge \d{v},
\d{z} \wedge \d{x} = -\dfrac{v}{z} \d{u} \wedge \d{v}, $$ and so
$$\begin{array}{lll}\norm{\d{ ^2\vector{x}}} & = & \sqrt{(\d{x} \wedge \d{y})^2 + (\d{z} \wedge \d{x})^2 + (\d{y} \wedge \d{z})^2} \\
& = & \sqrt{1 + \dfrac{u^2 + v^2}{z^2}}\ \d{u}\wedge\d{v} \\ & = &
\sqrt{2}\ \d{u}\wedge\d{v}.
\end{array}$$ Hence $$\dint \limits_{\Sigma} \ z\norm{\d{ ^2\vector{x}}} =
\dint\limits_{u^2 + v^2 \leq 1} \sqrt{u^2 + v^2}\ \sqrt{2}\
\d{u}\d{v} = \sqrt{2}\dint _0 ^{2\pi}\dint _0 ^1 \rho^2\
\d{\rho}\d{\theta} = \dfrac{2\pi\sqrt{2}}{3}.
$$
\end{answer}
\end{problem}
\begin{problem}
You put a perfectly spherical egg through an egg slicer, resulting
in $n$ slices of identical height, but you forgot to peel it first!
Shew that the amount of egg shell in any of the slices is the same.
Your argument must use surface integrals.\begin{answer} If the egg
has radius $R$, each slice will have height $2R/n$. A slice can be
parametrised by $0 \leq \theta \leq 2\pi$, $\phi_1 \leq \phi \leq
\phi_2$, with $$R\cos\phi_1 - R\cos\phi_2 = 2R/n.$$ The area of the
part of the surface of the sphere in slice is $$\dint _0
^{2\pi}\dint_{\phi_1} ^{\phi_2} R^2\sin\phi \d{\phi}\d{\theta} = 2\pi
R^2(\cos\phi_1 - \cos\phi_2 ) = 4\pi R^2/n.$$ This means that each
of the $n$ slices has identical area $4\pi R^2 /n$.
\end{answer}
\end{problem}
\begin{problem}
Evaluate $$\dint \limits_\Sigma xy\d{y}\d{z} - x^2\d{z} \d{x} + (x
+ z)\d{x} \d{y},
$$where $\Sigma$ is the top of the triangular region of the plane $2x + 2y + z =
6$ bounded by the first octant. \begin{answer} We project this plane
onto the coordinate axes obtaining
$$ \dint \limits_\Sigma xy\d{y}\d{z} = \dint _0 ^6 \dint _0 ^{3-z/2} (3-y-z/2)y \d{y} \d{z} = \frac{27}{4}, $$
$$ -\dint \limits_\Sigma x^2\d{z}\d{x} = -\dint _0 ^3 \dint _0 ^{6-2x} x^2 \d{z} \d{x} = -\frac{27}{2}, $$
$$ \dint \limits_\Sigma (x + z)\d{x}\d{y} = \dint _0 ^3 \dint _0 ^{3 - y} (6 - x - 2y) \d{x} \d{y} = \frac{27}{2}, $$
and hence
$$\dint \limits_\Sigma xy\d{y}\d{z} -
x^2\d{z} \d{x} + (x + z)\d{x} \d{y} = \frac{27}{4}.
$$
\end{answer}
\end{problem}
\section{Green's, Stokes', and Gauss' Theorems}
We are now in position to state the general Stoke's Theorem.
\begin{thm}[General Stoke's Theorem]
Let $M$ be a smooth oriented manifold, having boundary $\partial
M$. If $\omega$ is a differential form, then
$$\dint _{\partial M} \omega = \dint _{M} \d{\omega} .$$
\end{thm}
In $\reals^2$, if $\omega$ is a $1$-form, this takes the name of
\negrito{Green's Theorem.}
\begin{exa}
Evaluate $\doint _C (x - y^3)\d{x}+ x^3\d{y}$ where $C$ is the
circle $x^2 + y^2 = 1$.
\end{exa}
\begin{solu} We will first use Green's Theorem and then evaluate the
integral directly. We have
$$\begin{array}{lll}\d{\omega} & = & \d (x - y^3) \wedge \d{x}+ \d (x^3) \wedge \d{y}\\
& = & (\d{x}- 3y^2\d{y})\wedge \d{x}+ (3x^2\d{x})\wedge \d{y} \\
& = & (3y^2 + 3x^2) \d{x}\wedge \d{y}.
\end{array}$$
The region $M$ is the area enclosed by the circle $x^2 + y^2 = 1. $
Thus by Green's Theorem, and using polar coordinates,
$$\begin{array}{lll}\doint _C (x - y^3)\d{x}+ x^3\d{y} & = &
\dint _M (3y^2 + 3x^2) \d{x}\d{y} \\
& = & \dint _0 ^{2\pi} \dint _0 ^1 3\rho^2 \rho \d{\rho} \d{\theta}
\\
& = & \dfrac{3\pi}{2}. \end{array}$$ {\em Aliter:} We can evaluate
this integral directly, again resorting to polar coordinates.
$$\begin{array}{lll}\doint _C (x - y^3)\d{x}+ x^3\d{y} & = &
\dint _0 ^{2\pi} (\cos\theta -\sin^3\theta)(-\sin\theta)\d{\theta} + (\cos^3\theta)(\cos\theta)\d{\theta} \\
& = & \dint _0 ^{2\pi} (\sin^4\theta + \cos^4\theta -
\sin\theta\cos\theta)\d{\theta}.
\end{array}$$
To evaluate the last integral, observe that $1 = (\sin^2\theta +
\cos^2\theta )^2 = \sin^4\theta + 2\sin^2\theta\cos^2\theta +
\cos^4\theta$, whence the integral equals
$$\begin{array}{lll}
\dint _0 ^{2\pi} (\sin^4\theta + \cos^4\theta -
\sin\theta\cos\theta)\d{\theta} & = & \dint _0 ^{2\pi} (1 -
2\sin^2\theta\cos^2\theta - \sin\theta\cos\theta)\d{\theta} \\
& = & \dfrac{3\pi}{2}.
\end{array}$$
\end{solu}
In general, let $$ \omega = f(x,y)\d{x} + g(x,y)\d{y} $$ be a
$1$-form in $\reals ^2$. Then
$$\begin{array}{lll} \d{\omega} & = & \d{f(x,y)}\wedge\d{x} + \d{g(x,y)}\wedge\d{y} \\
&=& \left(\dfrac{\partial }{\partial x}f(x,y)\d{x}+ \dfrac{\partial }{\partial y}f(x,y)\d{y}\right)\wedge\d{x}
+ \left(\dfrac{\partial }{\partial x}g(x,y)\d{x}+ \dfrac{\partial }{\partial
y}g(x,y)\d{y}\right)\wedge\d{y}\\
& = & \left(\dfrac{\partial }{\partial x}g(x,y)- \dfrac{\partial }{\partial y}f(x,y)\right)\d{x}\wedge\d{y}
\end{array}$$
which gives the classical Green's Theorem
$$ \dint \limits _{\partial M} f(x,y)\d{x} + g(x,y)\d{y} = \dint \limits _M \left(\dfrac{\partial }{\partial x}g(x,y)- \dfrac{\partial }{\partial y}f(x,y)\right)\d{x}\d{y}.$$
In $\reals^3$, if $\omega$ is a 2-form, the above theorem takes the
name of \negrito{Gauss} or the \negrito{Divergence Theorem}.
\bigskip
\begin{exa}
Evaluate $\dint _S (x - y)\d{y} \d{z} + z\d{z} \d{x}- y\d{x} \d{y}$ where $S$ is the surface of the sphere $$x^2 + y^2 + z^2 = 9$$
and the positive direction is the outward normal.
\end{exa}
\begin{solu} The region $M$ is the interior of the sphere $x^2 + y^2 + z^2
= 9$. Now,
$$\begin{array}{lll}\d{\omega} & = & (\d{x}- \d{y}) \wedge\d{y} \wedge \d{z}
+ \d{z}\wedge\d{z} \wedge \d{x}- \d{y}\wedge\d{x}\wedge \d{y} \\
& = & \d{x}\wedge \d{y} \wedge \d{z}. \\
\end{array}$$
The integral becomes
$$\begin{array}{lll}\dint \limits_M \d{x} \d{y} \d{z} & = & \dfrac{4\pi}{3}(27)\\ & = & 36\pi. \end{array}$$
{\em Aliter:} We could evaluate this integral directly. We have
$$\dint _\Sigma (x - y)\d{y} \d{z} = \dint _\Sigma x\d{y} \d{z},
$$since $(x, y , z) \mapsto -y$ is an odd function of $y$ and the
domain of integration is symmetric with respect to $y$. Now,
$$\begin{array}{lll}\dint _\Sigma x\d{y} \d{z} & = &
\dint_{-3} ^3 \dint _0 ^{2\pi} |\rho|\sqrt{9 - \rho^2}\d{\rho}
\d{\theta}
\\
& = & 36\pi.
\end{array}
$$
Also