-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulate_null_mutations.py
65 lines (63 loc) · 1.92 KB
/
simulate_null_mutations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import numpy as np
import matplotlib.pyplot as plt
import math
import scipy.special
import pdb
import time
if __name__ == '__main__':
# N = 200
# epsilon = 0.0001
# selection = 0
# distribution = np.zeros(N)
# distribution[0] = 1
# num_generations = 100
# mut_rate = 0.01
# ncr = np.zeros(N)
# for i in range(N):
# ncr[i] = scipy.special.comb(N, i)
# for trial in range(num_generations):
# new_distribution = np.zeros(N)
# for i in range(N):
# index = i
# for j in range(N):
# k = j
# prob = (1 - selection) * index * 1.0 / N
# prob += mut_rate * (1 - 2 * prob)
# new_distribution[k] += ncr[k] * math.pow(prob, k) * math.pow(1 - prob, N - k) * distribution[index]
# new_distribution /= sum(new_distribution)
# if(np.max(abs(distribution - new_distribution)) < epsilon):
# break
# distribution = new_distribution / sum(new_distribution)
# #print(distribution)
# print(np.sum(distribution))
# distribution[0] = 0
# distribution[N - 1] = 0
# print(trial)
# plt.plot(distribution)
# plt.show()
num_generations = 1000
N_init = 10000
num_samples = 100000
#sim_distribution = np.zeros(N + 1)
mut_rate = 1e-8 # place holder
growth_rate = 1.014
results = []
for i in range(num_samples):
N = N_init
x = 1
existence_len = int(np.random.rand() * num_generations)
for g in range(existence_len):
prob = mut_rate + x * 1.0 / N
N = int(N * growth_rate)
x = np.random.poisson(N * prob)
if(x == 0 or x >= N):
break
if(x > 0 and x <= 100):
results.append(x)
plt.hist(results, bins=100)
plt.show()
#
# start = time.time()
# x = np.random.poisson(1)
# end = time.time()
# print(end - start)