-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalculate_s_table.py
39 lines (35 loc) · 1.25 KB
/
calculate_s_table.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pdb
from FitnessEstimator import FitnessEstimator
from load_data import load_data
from load_data import load_syn
from load_data import load_global_allele_df
from analyze_strat import load_strat
import pandas as pd
def load_gene_df(type):
type = 'syn'
gene_df_file = 'saved_data/gene_df_' + type + '_means.pkl'
pre_loaded = ['']
assert type in ['syn', 'mis', 'ptv']
if type in pre_loaded:
gene_df = pd.read_pickle(gene_df_file)
else:
if(type == 'mis'):
_, gene_df = load_data()
elif(type == 'ptv'):
gene_df, _ = load_data()
elif(type == 'syn'):
gene_df = load_syn()
estimator = FitnessEstimator(gene_df)
estimator.calculate_posterior_mean(gene_df)
gene_df.to_pickle(gene_df_file)
return gene_df
# performs our main analysis for the steady state method: we load in the gene_df
# for synonomys and ptv, and then we load in the stratified gene_df from missense
# primate scores. Then we calculate shet scores for all of these conditions.
if __name__ == '__main__':
load_global_allele_df()
types = ['syn', 'mis', 'ptv']
for type in types:
print('loading gene_df of type ' + type)
load_gene_df(type)
gene_df = load_strat()