forked from kaarthik108/snowChat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
226 lines (176 loc) · 7.26 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import re
import warnings
import streamlit as st
from langchain_core.messages import HumanMessage
from snowflake.snowpark.exceptions import SnowparkSQLException
from agent import MessagesState, create_agent
# from utils.snow_connect import SnowflakeConnection
from utils.snowchat_ui import StreamlitUICallbackHandler, message_func
from utils.snowddl import Snowddl
warnings.filterwarnings("ignore")
chat_history = []
snow_ddl = Snowddl()
gradient_text_html = """
<style>
.gradient-text {
font-weight: bold;
background: -webkit-linear-gradient(left, red, orange);
background: linear-gradient(to right, red, orange);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
display: inline;
font-size: 3em;
}
</style>
<div class="gradient-text">snowChat</div>
"""
st.markdown(gradient_text_html, unsafe_allow_html=True)
st.caption("Talk your way through data")
model_options = {
"gpt-4o-mini": "GPT-4o Mini",
"llama-3.1-405b": "Llama 3.1 405B",
"llama-3.2-3b": "Llama 3.2 3B",
"Gemini Pro 1.5": "Gemini Pro 1.5",
}
model = st.radio(
"Choose your AI Model:",
options=list(model_options.keys()),
format_func=lambda x: model_options[x],
index=0,
horizontal=True,
)
st.session_state["model"] = model
if "assistant_response_processed" not in st.session_state:
st.session_state["assistant_response_processed"] = True # Initialize to True
if "toast_shown" not in st.session_state:
st.session_state["toast_shown"] = False
if "rate-limit" not in st.session_state:
st.session_state["rate-limit"] = False
# # Show the toast only if it hasn't been shown before
# if not st.session_state["toast_shown"]:
# st.toast("The snowflake data retrieval is disabled for now.", icon="👋")
# st.session_state["toast_shown"] = True
# Show a warning if the model is rate-limited
if st.session_state["rate-limit"]:
st.toast("Probably rate limited.. Go easy folks", icon="⚠️")
st.session_state["rate-limit"] = False
if st.session_state["model"] == "Mixtral 8x7B":
st.warning("This is highly rate-limited. Please use it sparingly", icon="⚠️")
INITIAL_MESSAGE = [
{"role": "user", "content": "Hi!"},
{
"role": "assistant",
"content": "Hey there, I'm Chatty McQueryFace, your SQL-speaking sidekick, ready to chat up Snowflake and fetch answers faster than a snowball fight in summer! ❄️🔍",
},
]
config = {"configurable": {"thread_id": "42"}}
with open("ui/sidebar.md", "r") as sidebar_file:
sidebar_content = sidebar_file.read()
with open("ui/styles.md", "r") as styles_file:
styles_content = styles_file.read()
st.sidebar.markdown(sidebar_content)
selected_table = st.sidebar.selectbox(
"Select a table:", options=list(snow_ddl.ddl_dict.keys())
)
st.sidebar.markdown(f"### DDL for {selected_table} table")
st.sidebar.code(snow_ddl.ddl_dict[selected_table], language="sql")
# Add a reset button
if st.sidebar.button("Reset Chat"):
for key in st.session_state.keys():
del st.session_state[key]
st.session_state["messages"] = INITIAL_MESSAGE
st.session_state["history"] = []
st.sidebar.markdown(
"**Note:** <span style='color:red'>The snowflake data retrieval is disabled for now.</span>",
unsafe_allow_html=True,
)
st.write(styles_content, unsafe_allow_html=True)
# Initialize the chat messages history
if "messages" not in st.session_state.keys():
st.session_state["messages"] = INITIAL_MESSAGE
if "history" not in st.session_state:
st.session_state["history"] = []
if "model" not in st.session_state:
st.session_state["model"] = model
# Prompt for user input and save
if prompt := st.chat_input():
if len(prompt) > 500:
st.error("Input is too long! Please limit your message to 500 characters.")
else:
st.session_state.messages.append({"role": "user", "content": prompt})
st.session_state["assistant_response_processed"] = False # Assistant response not yet processed
messages_to_display = st.session_state.messages.copy()
# if not st.session_state["assistant_response_processed"]:
# # Exclude the last assistant message if assistant response not yet processed
# if messages_to_display and messages_to_display[-1]["role"] == "assistant":
# print("\n\nthis is messages_to_display \n\n", messages_to_display)
# messages_to_display = messages_to_display[:-1]
for message in messages_to_display:
message_func(
message["content"],
is_user=(message["role"] == "user"),
is_df=(message["role"] == "data"),
model=model,
)
callback_handler = StreamlitUICallbackHandler(model)
react_graph = create_agent(callback_handler, st.session_state["model"])
def append_chat_history(question, answer):
st.session_state["history"].append((question, answer))
def get_sql(text):
sql_match = re.search(r"```sql\n(.*)\n```", text, re.DOTALL)
return sql_match.group(1) if sql_match else None
def append_message(content, role="assistant"):
"""Appends a message to the session state messages."""
if content.strip():
st.session_state.messages.append({"role": role, "content": content})
def handle_sql_exception(query, conn, e, retries=2):
# append_message("Uh oh, I made an error, let me try to fix it..")
# error_message = (
# "You gave me a wrong SQL. FIX The SQL query by searching the schema definition: \n```sql\n"
# + query
# + "\n```\n Error message: \n "
# + str(e)
# )
# new_query = chain({"question": error_message, "chat_history": ""})["answer"]
# append_message(new_query)
# if get_sql(new_query) and retries > 0:
# return execute_sql(get_sql(new_query), conn, retries - 1)
# else:
# append_message("I'm sorry, I couldn't fix the error. Please try again.")
# return None
pass
def execute_sql(query, conn, retries=2):
if re.match(r"^\s*(drop|alter|truncate|delete|insert|update)\s", query, re.I):
append_message("Sorry, I can't execute queries that can modify the database.")
return None
try:
return conn.sql(query).collect()
except SnowparkSQLException as e:
return handle_sql_exception(query, conn, e, retries)
if (
"messages" in st.session_state
and st.session_state["messages"][-1]["role"] == "user"
and not st.session_state["assistant_response_processed"]
):
user_input_content = st.session_state["messages"][-1]["content"]
if isinstance(user_input_content, str):
# Start loading animation
callback_handler.start_loading_message()
messages = [HumanMessage(content=user_input_content)]
state = MessagesState(messages=messages)
result = react_graph.invoke(state, config=config, debug=True)
if result["messages"]:
assistant_message = callback_handler.final_message
append_message(assistant_message)
st.session_state["assistant_response_processed"] = True
if (
st.session_state["model"] == "Mixtral 8x7B"
and st.session_state["messages"][-1]["content"] == ""
):
st.session_state["rate-limit"] = True
# if get_sql(result):
# conn = SnowflakeConnection().get_session()
# df = execute_sql(get_sql(result), conn)
# if df is not None:
# callback_handler.display_dataframe(df)
# append_message(df, "data", True)