forked from PhoebusSi/Alpaca-CoT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb.py
104 lines (87 loc) · 3.41 KB
/
web.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import datetime
from fastapi import FastAPI, Request
import uvicorn
import time
import json
import argparse
import torch
import sys
import os
import platform
from utils.tools import *
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
parser = argparse.ArgumentParser(description='Process some llm info.')
parser.add_argument('--model_type', type=str, default="chatglm", choices=AVAILABLE_MODEL,
help='the base structure (not the model) used for model or fine-tuned model')
parser.add_argument('--model_path', type=str, default="7b",
help='the type for base model or the absolute path for fine-tuned model')
parser.add_argument('--lora_dir', type=str, default="none",
help='the path for fine-tuned lora params, none when not in use')
parser.add_argument('--lora_r', default=8, type=int)
parser.add_argument('--lora_alpha', default=16, type=int)
parser.add_argument('--lora_dropout', default=0.05, type=float)
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed serving')
parser.add_argument('--quantization_bit', default=None, type=int, help="The number of bits to quantize the model.")
parser.add_argument('--compute_dtype', default="fp16", type=str)
args = parser.parse_args()
# GPU count
NUM_GPUS = torch.cuda.device_count() if torch.cuda.is_available() else None
device = torch.device("cuda") if NUM_GPUS>0 else torch.device("cpu")
# load model & tokenizer
model, tokenizer = get_fine_tuned_model(args)
model = model.eval()
if torch.__version__ >= "2" and sys.platform != "win32" and sys.version_info < (3, 11):
model = torch.compile(model)
app = FastAPI()
def server(instruction):
# 1. generate input
prompt = generate_service_prompt(instruction, args.model_type, args.lora_dir)
# 2. encoder
generation_config = get_generation_config(args.model_type)
inputs_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(DEVICE_TYPE)
# 3. generate & decoder
outputs = model.generate(
input_ids=inputs_ids,
generation_config=generation_config
)
res = tokenizer.decode(outputs[0], skip_special_tokens=True)
output = generate_service_output(res, prompt, args.model_type, args.lora_dir)
return output
# garbage collection
def torch_gc():
if torch.cuda.is_available():
with torch.cuda.device(device):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
@app.get("/")
def read_root():
return {"Hello": "World"}
@app.get("/query/{query}")
def read_item(query: str):
begin_time = time.time()
answer = server(query)
end_time = time.time()
res = {"query": query, "answer": answer, "time": end_time - begin_time}
print(json.dumps(res, ensure_ascii=False))
return res
@app.post("/")
async def create_item(request: Request):
json_post_raw = await request.json()
json_post = json.dumps(json_post_raw)
json_post_list = json.loads(json_post)
prompt = json_post_list.get("prompt")
messages = []
messages.append({"role": "user", "content": prompt})
response = model.chat(tokenizer, messages)
now = datetime.datetime.now()
time = now.strftime("%Y-%m-%d %H:%M:%S")
answer = {
"response": response,
"status": 200,
"time": time
}
log = "["+ time +"]" + '",prompt:"' + prompt + '", response:"' + repr(response) + '"'
print(log)
torch_gc()
return answer
uvicorn.run(app, host="0.0.0.0", port=8410)