-
Notifications
You must be signed in to change notification settings - Fork 1
/
evaluate_pipeline.py
214 lines (182 loc) · 9.38 KB
/
evaluate_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from timeit import default_timer as timer
import tensorflow as tf
import numpy as np
import argparse
import importlib
import os
import scipy.misc
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(BASE_DIR, 'models'))
sys.path.append(os.path.join(BASE_DIR, 'utils'))
import provider
import requests
from config import Config
config = Config()
# Endpoint
pointnet_url = 'http://127.0.0.1:5000/api'
dgcnn_url = 'http://127.0.0.1:5001/api'
pointcnn_url = 'http://127.0.0.1:5002/api'
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--dataset', default='modelnet', help='Dataset to train on: modelnet or shapenet [default: modelnet]')
parser.add_argument('--model', default='pointnet_pipeline', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]')
parser.add_argument('--batch_size', type=int, default=4, help='Batch Size during training [default: 4]')
parser.add_argument('--num_point', type=int, default=1024, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--model_path', default='log/model.ckpt', help='model checkpoint file path [default: log/model.ckpt]')
parser.add_argument('--dump_dir', default='dump', help='dump folder path [dump]')
parser.add_argument('--visu', action='store_true', help='Whether to dump image for error case [default: False]')
FLAGS = parser.parse_args()
DATASET = FLAGS.dataset
#BATCH_SIZE = FLAGS.batch_size
#NUM_POINT = FLAGS.num_point
NUM_POINT = config.points_number
BATCH_SIZE = config.batch_size
NUM_FEATURES = 48
GPU_INDEX = FLAGS.gpu
MODEL_PATH = FLAGS.model_path
GPU_INDEX = FLAGS.gpu
MODEL = importlib.import_module(FLAGS.model) # import network module
DUMP_DIR = FLAGS.dump_dir
if not os.path.exists(DUMP_DIR): os.mkdir(DUMP_DIR)
LOG_FOUT = open(os.path.join(DUMP_DIR, 'log_evaluate.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
MAX_NUM_POINT = 2048
# Train/test on modelnet
if DATASET == 'modelnet':
NUM_CLASSES = 40
TRAIN_FILES = provider.get_data_files(os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt'))
TEST_FILES = provider.get_data_files(os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt'))
SHAPE_NAMES = [line.rstrip() for line in open(os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/shape_names.txt'))]
# Train/test on shapenet
elif DATASET == 'shapenet':
NUM_CLASSES = 55
TRAIN_FILES = provider.get_data_files(os.path.join(BASE_DIR, 'data/shapenet_core55_1024/train_files.txt'))
TEST_FILES = provider.get_data_files(os.path.join(BASE_DIR, 'data/shapenet_core55_1024/test_files.txt'))
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def evaluate(num_votes):
is_training = False
with tf.device('/gpu:'+str(GPU_INDEX)):
features_pl, labels_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT, num_features=NUM_FEATURES)
is_training_pl = tf.placeholder(tf.bool, shape=())
# simple model
pred, _, _ = MODEL.get_model(features_pl, is_training_pl, num_classes=NUM_CLASSES)
loss = MODEL.get_loss(pred, labels_pl)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
session_config = tf.ConfigProto()
session_config.gpu_options.allow_growth = True
session_config.allow_soft_placement = True
session_config.log_device_placement = True
sess = tf.Session(config=session_config)
# Restore variables from disk.
saver.restore(sess, MODEL_PATH)
log_string("Model restored.")
ops = {'features_pl': features_pl,
'labels_pl': labels_pl,
'is_training_pl': is_training_pl,
'pred': pred,
'loss': loss}
eval_one_epoch(sess, ops, num_votes)
def eval_one_epoch(sess, ops, num_votes=1, topk=1):
error_cnt = 0
is_training = False
total_correct = 0
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
total_time = 0.
total_batches = 0.
fout = open(os.path.join(DUMP_DIR, 'pred_label.txt'), 'w')
for fn in range(len(TEST_FILES)):
log_string('----'+str(fn)+'----')
current_data, current_label = provider.load_data_file(TEST_FILES[fn], with_normals=True)
current_data = current_data[:,0:NUM_POINT,:]
current_label = np.squeeze(current_label)
print(current_data.shape)
file_size = current_data.shape[0]
num_batches = file_size // BATCH_SIZE
print(file_size)
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
cur_batch_size = end_idx - start_idx
# Aggregating BEG
batch_loss_sum = 0 # sum of losses for the batch
batch_pred_sum = np.zeros((cur_batch_size, NUM_CLASSES)) # score for classes
batch_pred_classes = np.zeros((cur_batch_size, NUM_CLASSES)) # 0/1 for classes
for vote_idx in range(num_votes):
rotated_data = provider.rotate_point_cloud_by_angle(current_data[start_idx:end_idx, :, :],
vote_idx/float(num_votes) * np.pi * 2)
rotated_data_json = {'point_clouds': rotated_data.tolist()}
# Etract features pointcnn
response_pointcnn = requests.post(pointcnn_url, json=rotated_data_json)
pointcnn_features = np.array(response_pointcnn.json()['features'])
# # Etract features pointnet
# rotated_data_json = {'point_clouds': rotated_data[:, :, :3].tolist()}
# response_pointnet = requests.post(pointnet_url, json=rotated_data_json)
# pointnet_features = np.array(response_pointnet.json()['features'])
#
# # Etract features dgcnn
# rotated_data_json = {'point_clouds': rotated_data[:, :, :3].tolist()}
# response_dgcnn = requests.post(dgcnn_url, json=rotated_data_json)
# dgcnn_features = np.array(response_dgcnn.json()['features'])
# Concatenate
# point_features = np.concatenate((pointcnn_features, dgcnn_features), axis=-1)
point_features = pointcnn_features
feed_dict = {ops['features_pl']: point_features,
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
# Time measurement
start = timer()
loss_val, pred_val = sess.run([ops['loss'], ops['pred']],
feed_dict=feed_dict)
end = timer()
if batch_idx != 0:
total_time += (end-start)
total_batches += 1
batch_pred_sum += pred_val
batch_pred_val = np.argmax(pred_val, 1)
for el_idx in range(cur_batch_size):
batch_pred_classes[el_idx, batch_pred_val[el_idx]] += 1
batch_loss_sum += (loss_val * cur_batch_size / float(num_votes))
# pred_val_topk = np.argsort(batch_pred_sum, axis=-1)[:,-1*np.array(range(topk))-1]
# pred_val = np.argmax(batch_pred_classes, 1)
pred_val = np.argmax(batch_pred_sum, 1)
# Aggregating END
correct = np.sum(pred_val == current_label[start_idx:end_idx])
# correct = np.sum(pred_val_topk[:,0:topk] == label_val)
total_correct += correct
total_seen += cur_batch_size
loss_sum += batch_loss_sum
for i in range(start_idx, end_idx):
l = current_label[i]
total_seen_class[l] += 1
total_correct_class[l] += (pred_val[i-start_idx] == l)
fout.write('%d, %d\n' % (pred_val[i-start_idx], l))
if pred_val[i-start_idx] != l and FLAGS.visu: # ERROR CASE, DUMP!
img_filename = '%d_label_%s_pred_%s.jpg' % (error_cnt, SHAPE_NAMES[l],
SHAPE_NAMES[pred_val[i-start_idx]])
img_filename = os.path.join(DUMP_DIR, img_filename)
output_img = pc_util.point_cloud_three_views(np.squeeze(current_data[i, :, :]))
scipy.misc.imsave(img_filename, output_img)
error_cnt += 1
log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
log_string('eval accuracy: %f' % (total_correct / float(total_seen)))
log_string('eval avg class acc: %f' % (np.mean(np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float))))
log_string('mean evaluation time of one batch: %f' % (total_time / total_batches))
parameter_num = np.sum([np.prod(v.shape.as_list()) for v in tf.trainable_variables()])
log_string('parameter number: %f' % (parameter_num))
class_accuracies = np.array(total_correct_class)/np.array(total_seen_class,dtype=np.float)
for i, name in enumerate(SHAPE_NAMES):
log_string('%10s:\t%0.3f' % (name, class_accuracies[i]))
if __name__=='__main__':
with tf.Graph().as_default():
evaluate(num_votes=1)
LOG_FOUT.close()