-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_online.py
executable file
·278 lines (243 loc) · 12 KB
/
nn_online.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
##################################################
# GNU Radio Python Flow Graph
# Title: Nn Online
# Generated: Fri Jun 30 19:46:50 2017
##################################################
if __name__ == '__main__':
import ctypes
import sys
if sys.platform.startswith('linux'):
try:
x11 = ctypes.cdll.LoadLibrary('libX11.so')
x11.XInitThreads()
except:
print "Warning: failed to XInitThreads()"
from PyQt4 import Qt
from PyQt4.QtCore import QObject, pyqtSlot
from gnuradio import analog
from gnuradio import blocks
from gnuradio import eng_notation
from gnuradio import gr
from gnuradio import qtgui
from gnuradio.eng_option import eng_option
from gnuradio.filter import firdes
from optparse import OptionParser
import neural_networks
import sip
import sys
from gnuradio import qtgui
class nn_online(gr.top_block, Qt.QWidget):
def __init__(self):
gr.top_block.__init__(self, "Nn Online")
Qt.QWidget.__init__(self)
self.setWindowTitle("Nn Online")
qtgui.util.check_set_qss()
try:
self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
except:
pass
self.top_scroll_layout = Qt.QVBoxLayout()
self.setLayout(self.top_scroll_layout)
self.top_scroll = Qt.QScrollArea()
self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
self.top_scroll_layout.addWidget(self.top_scroll)
self.top_scroll.setWidgetResizable(True)
self.top_widget = Qt.QWidget()
self.top_scroll.setWidget(self.top_widget)
self.top_layout = Qt.QVBoxLayout(self.top_widget)
self.top_grid_layout = Qt.QGridLayout()
self.top_layout.addLayout(self.top_grid_layout)
self.settings = Qt.QSettings("GNU Radio", "nn_online")
self.restoreGeometry(self.settings.value("geometry").toByteArray())
##################################################
# Variables
##################################################
self.samp_rate = samp_rate = 32000
self.model_type = model_type = 'models/mlp.json'
self.learn = learn = True
##################################################
# Blocks
##################################################
self._model_type_options = ('models/mlp.json', 'models/lstm.json', )
self._model_type_labels = ('MLP', 'LSTM', )
self._model_type_group_box = Qt.QGroupBox('Model')
self._model_type_box = Qt.QHBoxLayout()
class variable_chooser_button_group(Qt.QButtonGroup):
def __init__(self, parent=None):
Qt.QButtonGroup.__init__(self, parent)
@pyqtSlot(int)
def updateButtonChecked(self, button_id):
self.button(button_id).setChecked(True)
self._model_type_button_group = variable_chooser_button_group()
self._model_type_group_box.setLayout(self._model_type_box)
for i, label in enumerate(self._model_type_labels):
radio_button = Qt.QRadioButton(label)
self._model_type_box.addWidget(radio_button)
self._model_type_button_group.addButton(radio_button, i)
self._model_type_callback = lambda i: Qt.QMetaObject.invokeMethod(self._model_type_button_group, "updateButtonChecked", Qt.Q_ARG("int", self._model_type_options.index(i)))
self._model_type_callback(self.model_type)
self._model_type_button_group.buttonClicked[int].connect(
lambda i: self.set_model_type(self._model_type_options[i]))
self.top_layout.addWidget(self._model_type_group_box)
_learn_check_box = Qt.QCheckBox('Learn')
self._learn_choices = {True: True, False: False}
self._learn_choices_inv = dict((v,k) for k,v in self._learn_choices.iteritems())
self._learn_callback = lambda i: Qt.QMetaObject.invokeMethod(_learn_check_box, "setChecked", Qt.Q_ARG("bool", self._learn_choices_inv[i]))
self._learn_callback(self.learn)
_learn_check_box.stateChanged.connect(lambda i: self.set_learn(self._learn_choices[bool(i)]))
self.top_layout.addWidget(_learn_check_box)
self.qtgui_time_sink_x_1 = qtgui.time_sink_f(
512, #size
samp_rate/100, #samp_rate
"", #name
1 #number of inputs
)
self.qtgui_time_sink_x_1.set_update_time(0.0)
self.qtgui_time_sink_x_1.set_y_axis(0, 0.5)
self.qtgui_time_sink_x_1.set_y_label('Error', "")
self.qtgui_time_sink_x_1.enable_tags(-1, True)
self.qtgui_time_sink_x_1.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "")
self.qtgui_time_sink_x_1.enable_autoscale(True)
self.qtgui_time_sink_x_1.enable_grid(False)
self.qtgui_time_sink_x_1.enable_axis_labels(True)
self.qtgui_time_sink_x_1.enable_control_panel(False)
if not True:
self.qtgui_time_sink_x_1.disable_legend()
labels = ['Error', '', '', '', '',
'', '', '', '', '']
widths = [1, 1, 1, 1, 1,
1, 1, 1, 1, 1]
colors = ["blue", "red", "green", "black", "cyan",
"magenta", "yellow", "dark red", "dark green", "blue"]
styles = [1, 1, 1, 1, 1,
1, 1, 1, 1, 1]
markers = [-1, -1, -1, -1, -1,
-1, -1, -1, -1, -1]
alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0]
for i in xrange(1):
if len(labels[i]) == 0:
self.qtgui_time_sink_x_1.set_line_label(i, "Data {0}".format(i))
else:
self.qtgui_time_sink_x_1.set_line_label(i, labels[i])
self.qtgui_time_sink_x_1.set_line_width(i, widths[i])
self.qtgui_time_sink_x_1.set_line_color(i, colors[i])
self.qtgui_time_sink_x_1.set_line_style(i, styles[i])
self.qtgui_time_sink_x_1.set_line_marker(i, markers[i])
self.qtgui_time_sink_x_1.set_line_alpha(i, alphas[i])
self._qtgui_time_sink_x_1_win = sip.wrapinstance(self.qtgui_time_sink_x_1.pyqwidget(), Qt.QWidget)
self.top_layout.addWidget(self._qtgui_time_sink_x_1_win)
self.qtgui_time_sink_x_0 = qtgui.time_sink_f(
512, #size
samp_rate/100, #samp_rate
"", #name
2 #number of inputs
)
self.qtgui_time_sink_x_0.set_update_time(0.0)
self.qtgui_time_sink_x_0.set_y_axis(-1, 1)
self.qtgui_time_sink_x_0.set_y_label('Amplitude', "")
self.qtgui_time_sink_x_0.enable_tags(-1, True)
self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "")
self.qtgui_time_sink_x_0.enable_autoscale(True)
self.qtgui_time_sink_x_0.enable_grid(False)
self.qtgui_time_sink_x_0.enable_axis_labels(True)
self.qtgui_time_sink_x_0.enable_control_panel(False)
if not True:
self.qtgui_time_sink_x_0.disable_legend()
labels = ['Prediction', 'Truth', '', '', '',
'', '', '', '', '']
widths = [1, 1, 1, 1, 1,
1, 1, 1, 1, 1]
colors = ["blue", "red", "green", "black", "cyan",
"magenta", "yellow", "dark red", "dark green", "blue"]
styles = [1, 2, 1, 1, 1,
1, 1, 1, 1, 1]
markers = [-1, -1, -1, -1, -1,
-1, -1, -1, -1, -1]
alphas = [1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0]
for i in xrange(2):
if len(labels[i]) == 0:
self.qtgui_time_sink_x_0.set_line_label(i, "Data {0}".format(i))
else:
self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])
self._qtgui_time_sink_x_0_win = sip.wrapinstance(self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget)
self.top_layout.addWidget(self._qtgui_time_sink_x_0_win)
self.neural_networks_nn_py_ff_0 = neural_networks.nn_py_ff(learn, model_type, 'modelu.h5')
self.blocks_throttle_0 = blocks.throttle(gr.sizeof_float*1, samp_rate/100,True)
self.blocks_sub_xx_0 = blocks.sub_ff(1)
self.blocks_multiply_xx_0 = blocks.multiply_vff(1)
self.blocks_delay_0 = blocks.delay(gr.sizeof_float*1, 1)
self.blocks_add_xx_0 = blocks.add_vff(1)
self.blocks_abs_xx_0 = blocks.abs_ff(1)
self.analog_sig_source_x_0_0_0_0 = analog.sig_source_f(samp_rate, analog.GR_SIN_WAVE, 456, 2, -1)
self.analog_sig_source_x_0_0_0 = analog.sig_source_f(samp_rate, analog.GR_COS_WAVE, 333, 0.5, -0.5)
self.analog_sig_source_x_0_0 = analog.sig_source_f(samp_rate, analog.GR_SIN_WAVE, 100, 2, 1)
self.analog_sig_source_x_0 = analog.sig_source_f(samp_rate, analog.GR_SIN_WAVE, 1000, 1, 0)
##################################################
# Connections
##################################################
self.connect((self.analog_sig_source_x_0, 0), (self.blocks_add_xx_0, 0))
self.connect((self.analog_sig_source_x_0_0, 0), (self.blocks_add_xx_0, 1))
self.connect((self.analog_sig_source_x_0_0_0, 0), (self.blocks_multiply_xx_0, 2))
self.connect((self.analog_sig_source_x_0_0_0_0, 0), (self.blocks_multiply_xx_0, 1))
self.connect((self.blocks_abs_xx_0, 0), (self.qtgui_time_sink_x_1, 0))
self.connect((self.blocks_add_xx_0, 0), (self.blocks_multiply_xx_0, 0))
self.connect((self.blocks_delay_0, 0), (self.blocks_sub_xx_0, 0))
self.connect((self.blocks_delay_0, 0), (self.qtgui_time_sink_x_0, 0))
self.connect((self.blocks_multiply_xx_0, 0), (self.blocks_throttle_0, 0))
self.connect((self.blocks_sub_xx_0, 0), (self.blocks_abs_xx_0, 0))
self.connect((self.blocks_throttle_0, 0), (self.blocks_sub_xx_0, 1))
self.connect((self.blocks_throttle_0, 0), (self.neural_networks_nn_py_ff_0, 0))
self.connect((self.blocks_throttle_0, 0), (self.qtgui_time_sink_x_0, 1))
self.connect((self.neural_networks_nn_py_ff_0, 0), (self.blocks_delay_0, 0))
def closeEvent(self, event):
self.settings = Qt.QSettings("GNU Radio", "nn_online")
self.settings.setValue("geometry", self.saveGeometry())
event.accept()
def get_samp_rate(self):
return self.samp_rate
def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate
self.qtgui_time_sink_x_1.set_samp_rate(self.samp_rate/100)
self.qtgui_time_sink_x_0.set_samp_rate(self.samp_rate/100)
self.blocks_throttle_0.set_sample_rate(self.samp_rate/100)
self.analog_sig_source_x_0_0_0_0.set_sampling_freq(self.samp_rate)
self.analog_sig_source_x_0_0_0.set_sampling_freq(self.samp_rate)
self.analog_sig_source_x_0_0.set_sampling_freq(self.samp_rate)
self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)
def get_model_type(self):
return self.model_type
def set_model_type(self, model_type):
self.model_type = model_type
self._model_type_callback(self.model_type)
self.neural_networks_nn_py_ff_0.set_model(self.model_type)
def get_learn(self):
return self.learn
def set_learn(self, learn):
self.learn = learn
self._learn_callback(self.learn)
self.neural_networks_nn_py_ff_0.set_learn(self.learn)
def main(top_block_cls=nn_online, options=None):
from distutils.version import StrictVersion
if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"):
style = gr.prefs().get_string('qtgui', 'style', 'raster')
Qt.QApplication.setGraphicsSystem(style)
qapp = Qt.QApplication(sys.argv)
tb = top_block_cls()
tb.start()
tb.show()
def quitting():
tb.stop()
tb.wait()
qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting)
qapp.exec_()
if __name__ == '__main__':
main()