-
Notifications
You must be signed in to change notification settings - Fork 0
/
nn_mod_cpfsk.py
executable file
·213 lines (186 loc) · 9.61 KB
/
nn_mod_cpfsk.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
##################################################
# GNU Radio Python Flow Graph
# Title: Nn Mod
# Generated: Sun Jul 2 12:24:23 2017
##################################################
if __name__ == '__main__':
import ctypes
import sys
if sys.platform.startswith('linux'):
try:
x11 = ctypes.cdll.LoadLibrary('libX11.so')
x11.XInitThreads()
except:
print "Warning: failed to XInitThreads()"
from PyQt4 import Qt
from PyQt4.QtCore import QObject, pyqtSlot
from gnuradio import analog
from gnuradio import blocks
from gnuradio import eng_notation
from gnuradio import gr
from gnuradio import qtgui
from gnuradio.eng_option import eng_option
from gnuradio.filter import firdes
from optparse import OptionParser
import neural_networks
import sip
import sys
from gnuradio import qtgui
class NN_MOD(gr.top_block, Qt.QWidget):
def __init__(self):
gr.top_block.__init__(self, "Nn Mod")
Qt.QWidget.__init__(self)
self.setWindowTitle("Nn Mod")
qtgui.util.check_set_qss()
try:
self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc'))
except:
pass
self.top_scroll_layout = Qt.QVBoxLayout()
self.setLayout(self.top_scroll_layout)
self.top_scroll = Qt.QScrollArea()
self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame)
self.top_scroll_layout.addWidget(self.top_scroll)
self.top_scroll.setWidgetResizable(True)
self.top_widget = Qt.QWidget()
self.top_scroll.setWidget(self.top_widget)
self.top_layout = Qt.QVBoxLayout(self.top_widget)
self.top_grid_layout = Qt.QGridLayout()
self.top_layout.addLayout(self.top_grid_layout)
self.settings = Qt.QSettings("GNU Radio", "NN_MOD")
self.restoreGeometry(self.settings.value("geometry").toByteArray())
##################################################
# Variables
##################################################
self.samp_rate = samp_rate = 1e3
self.data_file = data_file = 'data/cpfsk.bin'
##################################################
# Blocks
##################################################
self._data_file_options = ('data/pam4.bin', 'data/bpsk.bin', 'data/am-dsb.bin', 'data/cpfsk.bin', )
self._data_file_labels = ('PAM4', 'BPSK', 'AM-DSB', 'CPFSK', )
self._data_file_group_box = Qt.QGroupBox('Modulation Type')
self._data_file_box = Qt.QHBoxLayout()
class variable_chooser_button_group(Qt.QButtonGroup):
def __init__(self, parent=None):
Qt.QButtonGroup.__init__(self, parent)
@pyqtSlot(int)
def updateButtonChecked(self, button_id):
self.button(button_id).setChecked(True)
self._data_file_button_group = variable_chooser_button_group()
self._data_file_group_box.setLayout(self._data_file_box)
for i, label in enumerate(self._data_file_labels):
radio_button = Qt.QRadioButton(label)
self._data_file_box.addWidget(radio_button)
self._data_file_button_group.addButton(radio_button, i)
self._data_file_callback = lambda i: Qt.QMetaObject.invokeMethod(self._data_file_button_group, "updateButtonChecked", Qt.Q_ARG("int", self._data_file_options.index(i)))
self._data_file_callback(self.data_file)
self._data_file_button_group.buttonClicked[int].connect(
lambda i: self.set_data_file(self._data_file_options[i]))
self.top_layout.addWidget(self._data_file_group_box)
self.qtgui_time_sink_x_0 = qtgui.time_sink_f(
1024, #size
samp_rate, #samp_rate
"", #name
12 #number of inputs
)
self.qtgui_time_sink_x_0.set_update_time(0.0)
self.qtgui_time_sink_x_0.set_y_axis(0, 10)
self.qtgui_time_sink_x_0.set_y_label('Modulation Type', '')
self.qtgui_time_sink_x_0.enable_tags(-1, True)
self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "")
self.qtgui_time_sink_x_0.enable_autoscale(False)
self.qtgui_time_sink_x_0.enable_grid(False)
self.qtgui_time_sink_x_0.enable_axis_labels(True)
self.qtgui_time_sink_x_0.enable_control_panel(False)
if not True:
self.qtgui_time_sink_x_0.disable_legend()
labels = ['Input', 'WBFM', 'QPSK', 'QAM64', 'QAM16',
'PAM4', 'GFSK', 'CPFSK', 'BPSK', 'AM-SBB', 'AM-DSB', '8PSK']
widths = [1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1]
colors = ["blue", "red", "green", "cyan", "black",
"magenta", "yellow", "dark red", "dark green", "cyan", "black", "green"]
styles = [1, 3, 2, 2, 2,
2, 2, 2, 2, 3, 3, 2]
markers = [-1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1]
alphas = [1.0, 0.7, 0.7, 0.7, 0.7,
0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7]
for i in xrange(12):
if len(labels[i]) == 0:
self.qtgui_time_sink_x_0.set_line_label(i, "Data {0}".format(i))
else:
self.qtgui_time_sink_x_0.set_line_label(i, labels[i])
self.qtgui_time_sink_x_0.set_line_width(i, widths[i])
self.qtgui_time_sink_x_0.set_line_color(i, colors[i])
self.qtgui_time_sink_x_0.set_line_style(i, styles[i])
self.qtgui_time_sink_x_0.set_line_marker(i, markers[i])
self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i])
self._qtgui_time_sink_x_0_win = sip.wrapinstance(self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget)
self.top_layout.addWidget(self._qtgui_time_sink_x_0_win)
self.neural_networks_nn_mod_py_cf_0 = neural_networks.nn_mod_py_cf('models/conv.json', 'weights/convmodrecnets_CNN2_0.5.wts.h5')
self.blocks_throttle_0 = blocks.throttle(gr.sizeof_gr_complex*1, samp_rate,True)
self.blocks_file_source_0 = blocks.file_source(gr.sizeof_gr_complex*1, data_file, True)
self.analog_const_source_x_0_1_7 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 0)
self.analog_const_source_x_0_1_6 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 1)
self.analog_const_source_x_0_1_5 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 2)
self.analog_const_source_x_0_1_4 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 3)
self.analog_const_source_x_0_1_3 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 4)
self.analog_const_source_x_0_1_2 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 5)
self.analog_const_source_x_0_1_1 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 6)
self.analog_const_source_x_0_1_0 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 7)
self.analog_const_source_x_0_1 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 8)
self.analog_const_source_x_0_0 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 9)
self.analog_const_source_x_0 = analog.sig_source_f(0, analog.GR_CONST_WAVE, 0, 0, 10)
##################################################
# Connections
##################################################
self.connect((self.analog_const_source_x_0, 0), (self.qtgui_time_sink_x_0, 1))
self.connect((self.analog_const_source_x_0_0, 0), (self.qtgui_time_sink_x_0, 2))
self.connect((self.analog_const_source_x_0_1, 0), (self.qtgui_time_sink_x_0, 3))
self.connect((self.analog_const_source_x_0_1_0, 0), (self.qtgui_time_sink_x_0, 4))
self.connect((self.analog_const_source_x_0_1_1, 0), (self.qtgui_time_sink_x_0, 5))
self.connect((self.analog_const_source_x_0_1_2, 0), (self.qtgui_time_sink_x_0, 6))
self.connect((self.analog_const_source_x_0_1_3, 0), (self.qtgui_time_sink_x_0, 7))
self.connect((self.analog_const_source_x_0_1_4, 0), (self.qtgui_time_sink_x_0, 8))
self.connect((self.analog_const_source_x_0_1_5, 0), (self.qtgui_time_sink_x_0, 9))
self.connect((self.analog_const_source_x_0_1_6, 0), (self.qtgui_time_sink_x_0, 10))
self.connect((self.analog_const_source_x_0_1_7, 0), (self.qtgui_time_sink_x_0, 11))
self.connect((self.blocks_file_source_0, 0), (self.blocks_throttle_0, 0))
self.connect((self.blocks_throttle_0, 0), (self.neural_networks_nn_mod_py_cf_0, 0))
self.connect((self.neural_networks_nn_mod_py_cf_0, 0), (self.qtgui_time_sink_x_0, 0))
def closeEvent(self, event):
self.settings = Qt.QSettings("GNU Radio", "NN_MOD")
self.settings.setValue("geometry", self.saveGeometry())
event.accept()
def get_samp_rate(self):
return self.samp_rate
def set_samp_rate(self, samp_rate):
self.samp_rate = samp_rate
self.qtgui_time_sink_x_0.set_samp_rate(self.samp_rate)
self.blocks_throttle_0.set_sample_rate(self.samp_rate)
def get_data_file(self):
return self.data_file
def set_data_file(self, data_file):
self.data_file = data_file
self._data_file_callback(self.data_file)
self.blocks_file_source_0.open(self.data_file, True)
def main(top_block_cls=NN_MOD, options=None):
from distutils.version import StrictVersion
if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"):
style = gr.prefs().get_string('qtgui', 'style', 'raster')
Qt.QApplication.setGraphicsSystem(style)
qapp = Qt.QApplication(sys.argv)
tb = top_block_cls()
tb.start()
tb.show()
def quitting():
tb.stop()
tb.wait()
qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting)
qapp.exec_()
if __name__ == '__main__':
main()