-
Notifications
You must be signed in to change notification settings - Fork 0
/
prl_paper.tex
959 lines (899 loc) · 70.6 KB
/
prl_paper.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
% ****** Start of file apssamp.tex ******
%
% This file is part of the APS files in the REVTeX 4.1 distribution.
% Version 4.1r of REVTeX, August 2010
%
% Copyright (c) 2009, 2010 The American Physical Society.
%
% See the REVTeX 4 README file for restrictions and more information.
%
% TeX'ing this file requires that you have AMS-LaTeX 2.0 installed
% as well as the rest of the prerequisites for REVTeX 4.1
%
% See the REVTeX 4 README file
% It also requires running BibTeX. The commands are as follows:
%
% 1) latex apssamp.tex
% 2) bibtex apssamp
% 3) latex apssamp.tex
% 4) latex apssamp.tex
%%
\documentclass[%
reprint,
%superscriptaddress,
%groupedaddress,
%unsortedaddress,
%runinaddress,
%frontmatterverbose,
% preprint,
%showpacs,preprintnumbers,
%nofootinbib,
%nobibnotes,
%bibnotes,
amsmath,amssymb,
aps,
% pra,
prl,
%rmp,
%prstab,
%prstper,
%floatfix,
]{revtex4-1}
\usepackage{soul}
\usepackage{color}
\newcommand{\hlcyan}[1]{{\sethlcolor{cyan}\hl{#1}}}
\newcommand{\hlred}[1]{{\sethlcolor{red}\hl{#1}}}
\usepackage{graphicx}% Include figure files
\usepackage{dcolumn}% Align table columns on decimal point
\usepackage{bm}% bold math
\usepackage{hyperref}% add hypertext capabilities
%\usepackage[mathlines]{lineno}% Enable numbering of text and display math
%\linenumbers\relax % Commence numbering lines
%\usepackage[showframe,%Uncomment any one of the following lines to test
%%scale=0.7, marginratio={1:1, 2:3}, ignoreall,% default settings
%%text={7in,10in},centering,
%%margin=1.5in,
%%total={6.5in,8.75in}, top=1.2in, left=0.9in, includefoot,
%%height=10in,a5paper,hmargin={3cm,0.8in},
%]{geometry}
%
\usepackage{xcolor}
\newcommand{\DP}[1]{\noindent \color{cyan} (DP: #1)\normalcolor}
\newcommand{\AZ}[1]{\noindent \color{purple} (AZ: #1)\normalcolor}
\newcommand{\add}[1]{\noindent \color{blue} #1 \normalcolor}
\newcommand{\del}[1]{\noindent \color{red} \st{#1}\normalcolor}
\newcommand{\AM}[1]{\noindent \color{magenta} (AA: #1)\normalcolor}
\def\red{\textcolor{red}}
%
\def\blue{\textcolor{blue}}
\begin{document}
%
\preprint{APS/123-QED}
\title{Temporal Evolution of Erosion in Pore-Networks:\\ From Homogenization to Instability}
% Force line breaks with \\
% \thanks{A footnote to the article title}%
\author{Ahmad Zareei}
\thanks{A.Z. and D.P. contributed equally.}
\affiliation{School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02148}%\altaffiliation[]{SEAS, Pierce Hall}%Lines break automatically or can be forced with
\author{Deng Pan}%
\thanks{A.Z. and D.P. contributed equally.}
\affiliation{School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02148}%\altaffiliation[]{SEAS, Pierce Hall}%Lines break automatically or can be forced with
\author{Ariel Amir}%
\email{[email protected]}
\affiliation{School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02148}%\altaffiliation[]{SEAS, Pierce Hall}%Lines break automatically or can be forced with
% need to figure out how to reference dagger
% \author{}
% \altaffiliation[]{SEAS, Pierce Hall}%Lines break automatically or can be forced with \\
% \author{}%
% \email{}
% \affiliation{% SEAS, Pierce Hall, Harvard University}%
% \collaboration{MUSO Collaboration}%\noaffiliation
\date{\today}% It is always \today, today,
% but any date may be explicitly specified
\begin{abstract}
We study the dynamics of flow-networks in porous media using a two/three dimensional
pore-network model. We consider a class of erosion dynamics
for a single phase flow with no deposition, chemical reactions, or topology changes assuming a constitutive law depending on flow rate, local velocities, or shear stress at the walls. We show that depending on the erosion law, the flow may become uniform and homogenized or become unstable and develop channels. By defining an order parameter capturing these different behaviors we show that a phase transition occurs depending on the erosion dynamics. Using a simple model, we identify quantitative criteria to distinguish these regimes and {correctly predict the fate of the network, and discuss the experimental relevance of our result. }
\end{abstract}
%
% \pacs{Valid PACS appear here}% PACS, the Physics and Astronomy
% Classification Scheme.
%\keywords{Suggested keywords}%Use showkeys class option if keyword
%display desired
\maketitle
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% \tableofcontents %%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% \section{Introduction}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% The fluids %%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Fluid flow through a porous medium undergoing a dynamical change in its network of micro-structure is ubiquitous in nature~\cite{marbach2016pruning,alim2013random,tero2010rules,heaton2010growth} as well as in numerous environmental~\cite{schlesinger1999carbon,winkler1979pore,batzle1992seismic,cohen2015mechanisms} and industrial applications~\cite{duduta2011semi,sun2019hierarchical,smith2017multiphase,ferguson2012nonequilibrium}.
The disordered pore structure of a porous medium results in heterogeneously distributed fluid flow between the pores.
The boundaries of the pore structure can change dynamically either through erosion or deposition/sedimentation of material. Such heterogeneous changes of the solid structure affect the pore-level fluid flow which in turn affects the dynamical changes to the pore structure. This feedback mechanism along with the initial heterogeneous fluid flow makes it difficult to understand and predict the porous media behavior. Nonetheless, an understanding of the dynamical change is essential to improve any of the porous media applications where the pore network changes over time, including groundwater remediation and precipitation of minerals in rocks~\cite{rad2013pore}, biofilm growth in water filtration, and protective filters \cite{herzig1970flow,tien1979advances,jaisi2008transport,carrel2018biofilms,seymour2004anomalous}, as well as enhanced oil recovery with polymer flooding \cite{lake2014fundamentals,parsa2020origin}, or water-driven erosion \cite{schorghofer2004spontaneous,mahadevan2012flow}.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
% \section{Methods \& Results}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
\begin{figure}[h]
% \centering
\includegraphics[width = 0.45\textwidth]{Fig1.pdf}
\caption{(a) Cross section of a porous sandstone sample%obtained using computerized tomography
~\cite{akanji2010finite}. The scale bar shows $1$mm.
% The network of pores and throats is highlighted in blue.
In the network model, the pores are represented with nodes and the throats between pores are approximated with tubes. (b) Schematic of a topologically random network. The edge diameters representing the pore-throats are randomly distributed. (c) A structured diamond grid network with a random distribution of edge diameters. (d) The universal probability density function (PDF) of fluid flux for a topologically random (blue) or diamond-grid (red) network of nodes (red) with a random distribution of edge diameter sampled from a uniform (triangles), log-normal (circles), or truncated normal (plus) distribution. }
\label{fig:fig1}
\end{figure}
%
\emph{Network approach}-- We approach this long-standing problem using a network model for the porous structure~\cite{fatt1956network, blunt2013pore,stoop2019disorder,bryant1993network,blunt2013pore,dong2009pore,blunt2013pore,blunt1995pore,alim2017local}.
The network of pores inside the solid structure is connected together through pore-throats that effectively show resistance to the fluid flow between the pores (Fig.~\ref{fig:fig1}a). Network-based models have been shown to successfully capture key properties of fluid flow in a porous material such as the probability distribution of fluid flux~\cite{alim2017local}, the permeability scaling during clogging~\cite{shima2021}, or the first fluidized path in a porous structure~\cite{fraggedakis_chaparian_tammisola_2021}. We consider low-Reynolds fluid flow through the porous network. The fluid flow rate at the edge connecting pores $i$ and $j$ is given by $ q_{ij} = C_{ij}(p_i - p_j)$ where $p_i,p_j$ represent pressures at neighboring nodes. Poiseuille's law implies that the conductance $C_{ij} = {\pi r_{ij}^4}/{8 \mu l_{ij}}$, with $r_{ij}$ and $l_{ij}$ the edge's radius and length. Initially, we consider a topologically random network of nodes constructed using uniformly distributed nodes (i.e., a Poisson point process) in a planar domain connected using Delaunay triangulation (Fig. \ref{fig:fig1}b). The pore-throats or radii of the edges are considered as independent and identically distributed random variables and fluid flow in the edges are obtained by solving for conservation of mass at all nodes given a pressure difference between the nodes on the boundaries (supplementary material, SM, S1). Independent of edge radius distribution, the probability density function (PDF) of normalized fluid flux is well described by a single exponential distribution shown in Fig. \ref{fig:fig1}d. The exponential distribution of fluid flux is similar to earlier experimental and numerical measurements~\cite{datta2013spatial,shima2021,alim2017local} and is a universal feature in random porous networks. Considering a structured diamond-grid of pores (Fig. \ref{fig:fig1}c) which significantly simplifies the geometrical complexity of the network and allows for analytical tractability, one finds that the PDF of normalized fluid flux remains unchanged for various distributions suggesting robustness to network topology (Fig.~\ref{fig:fig1}d and SM S2). In the following, we study, analytically and numerically, how this universal distribution evolves as the network is modified based on a local constitutive law.
\textit{Network evolution model}-- The degradation of the solid skeleton (i.e., erosion) or deposition of material on the pore throats (i.e., clogging) in the network of pores is modeled by the change (increase or decrease) in the radii of the edges connecting the pores.
%which translates into changes in the flow resistance between the pores.
The rate of change of the radii depends on local fluid flow parameters (i.e., $q, r$), however, the exact dependence is unknown. A general constitutive model for erosion can be written as $dr_{ij}/dt = f(q_{ij},r_{ij})$, where $f(q_{ij},r_{ij})$ represents the functional dependence of erosion on the fluid flow parameters.
%flux $q_{ij}$ and the tube radius $r_{ij}$.
Erosion in saturated, granular, porous medium occurs when the shear stress at the walls $\tau_w$ exerted by the fluid overcomes the cohesive strength of the solid matter $\tau_c$. In a class of erosion models previously studied~\cite{jager2017channelization,ristroph2012sculpting,wan2004investigation} the eroded mass per unit area is linearly proportional to the excess shear, i.e., $\dot{m} = \kappa (\tau_w-\tau_c)$ where $\kappa$ is the linear proportionality constant. This erosion model effectively results in an increase in the radius of the edges in our network model where \add{$\dot{r} \propto \kappa/r (|q|/r^3 - \tau_c)$, where the $1/r$ factor comes from the eroded mass $dm =2\pi\rho r l dr$ for a cylindrical pipe and $|q|/r^3$ comes from the shear stress of laminar flow in pipes \cite{white2006viscous}.} Similar models have further been used in biological models for the growth of vascular networks~\cite{chen2012haemodynamics,hacking1996shear}. In addition to local shear stress, erosion based on local fluid velocity ($v \propto |q|/r^2$) \cite{kudrolli2016evolution}, local pressure difference ($\Delta p \propto |q|/r^4$) \cite{derr2020flow,mahadevan2012flow}, and power dissipation ($P \propto q^2/r^4$ ) ~\cite{steeb2007modeling,marot2012study,sibille2015internal} have also been considered as alternative models. Here, we first focus on a class of erosion dynamics described by $f(q_{ij},r_{ij}) = \alpha |q_{ij}|^m/r_{ij}^n$ where $m,n,\alpha>0$ are constants.
This model unifies a diverse set of erosion and clogging dynamics as different values of $m$ and $n$ correspond to different physics of erosion. Later we will generalize the models to include other forms of nonlinearities.
%
\begin{figure}[!h]
\includegraphics[width = 0.48\textwidth]{Fig2_.pdf}
\caption{Erosion in a network of pipes. The initial condition is shown with the label $t=0$ in the first row. Each row afterward corresponds to the {simulation result at $t=T$ where $\langle r_{t=T}\rangle=2r_0$ with $r_0 = \langle r_{t=0}\rangle$}. The erosion law is based on $f(|q|,r) = |q|/r^n$ with different powers of $n$ correspond to different models of erosion. The first, second, and third columns are snapshots of the pore network, the PDF of normalized fluid flux $q/\langle q \rangle$, and the PDF of normalized radius $r/\langle r\rangle$ at $t=T$, respectively.} \label{fig:fig2}
\end{figure}
% Particularly, the erosion when $m=1$ and (i) $n=0$ depends on the amount of flux $q_{ij}$ passing through the edge; (ii) $n=2$ depends on the local velocities \cite{kudrolli2016evolution}; (iii) $n=3$ depends on the shear force at the boundary of the throat~ \cite{bonelli2011micromechanical,parker2000purely,jager2017channelization}. {Additionally, $m=2$ and $n=6$ corresponds to models considered in biological transport networks where the radii changes are {proportional to the square of shear stress at the boundary walls}~\cite{hu2013adaptation,ronellenfitsch2016global}.}
% We later address the effect of incorporating the threshold discussed above into our model.
We consider a randomly initialized network with disordered diameters obtained from a uniform distribution (SM, S1).
The flow inside the pores, PDF of flux in the tubes, and PDF of tube radii are shown in Fig. \ref{fig:fig2}. We assume a constant pressure difference between the left and the right boundaries. In each time step, we increase the local radii of the tubes based on the erosion law $dr_{ij}/dt = \alpha q_{ij}^m/r_{ij}^n$, assuming erosion is linear in the flux ($m=1$).
% Later we will consider the network behavior for other powers of $m$.
We continue the simulations until $\langle r \rangle = 2 r_0$.
The results of the simulations for different values of $n$ are shown in Fig. \ref{fig:fig2}. When $n=1$ or $2$, the network develops channels. In such cases, the flow is dominated by a few edges carrying most of the flow while the rest of the network carries almost no flow. This is also reflected by a bimodal radii distribution. In contrast, when $n=3$ (corresponding to erosion linear in shear), we find that despite the
increase in tube radii and absolute flow rates, the normalized flow distribution is hardly affected, maintaining its original exponential form. Increasing $n$ to larger values, $n=4$ or $5$, we find that the flow pattern in the network moves towards homogenization. Here, the tail of the normalized fluid flux distribution retracts and the coefficient of variation reduces. Similarly, the PDF of the tube diameters becomes narrower.
% It is to be noted that the different distributions obtained for different powers of $m,n$ represent different statistics that cannot be collapsed.
We found that similar results uphold in a 3d random tube network (SM, Fig.~S2) as well as a 2d topologically ordered (diamond grid) network, illustrating the robustness of the results to the network topology (SM, Fig.~S3). Similarly, we found that the results hold also when using an initial narrow distribution of diameters (SM, Fig.~S4), showing robustness with respect to the strength of the disorder. We further changed the boundary conditions, using a circular random network with the inlet at the center and outlet at the outer edges and we find that similar results uphold~(SM, Fig.~S5).
To quantify the transition of the network between the channeling instability and homogenization, we numerically define an order parameter $\mathcal{O}$ that varies between zero when flux through every edge is identical and one when the flow is highly localized (SM, S4). Calculating the order parameter over different simulations, we find a phase transition happens at $n \approx 3$ (SM, Fig. S6).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%% PHASE TRANSITION %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
% To quantify the transition of the network between the channeling instability and homogenization, we define an order parameter~\footnote{The order parameter defined here is inspired by the participation ratio (PR) employed to quantify the localization of an eigenstate in the analysis of Anderson localization~\cite{kramer1993localization}.} % $\mathcal{O}$
% %
% \begin{align}
% \mathcal{O} = \frac{1}{N-1} \left( N - \frac{\left( \sum_{ij} q^2_{ij}\right)^2}{ \sum_{ij} q^4_{ij}}\right),
% \end{align}
% %
% where $N$ is the number of edges. The order parameter $\mathcal{O}=0 $ when the flux through every edge is identical. On the other hand, when fluid flux becomes highly localized with only a few edges with non-zero flux, $\mathcal{O}\to 1$. We numerically calculated the order parameter $\mathcal{O}$ for {randomly initialized networks, averaged over 20 different realization} (Fig. S6). We find that at $n\approx 3$ the order parameter, remains unchanged; however for $n>3$ the order parameter moves toward zero, where the flow becomes more uniform, and for $n<3$ the order parameter goes toward unity, where channels are developed. This indicates a phase transition at $n=3$ in the long-time behavior of the network.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
% \begin{figure}[!h]
% % \centering
% \includegraphics[width = 0.45\textwidth]{Fig3-Main.pdf}
% \caption{ Order parameter $\mathcal{O}$ calculated from simulation results presented in Fig. \ref{fig:fig2} for different powers of $n$ with $m=1$ plotted over time.
% % (b,c) Tubes in series (b) or parallel (c) configuration. The tube radius dynamically change with the erosion law, i.e., $f(q,r) = \alpha |q|^m/r^n$. When the tubes are in series, for any $m,n$, (b$_1$) the normalized pressure at the middle junction between the tubes $\tilde p_m = (p_m - p_l)/(p_r-p_l)$ approaches $1/2$ which results in a homogenized pressure distribution. When the tubes are in parallel, for (c$_1$) $m=(n+1)/4$, the flow ratio between the pipes does not change over time; (c$_2$) $m<(n+1)/4$ the flow distributes between the tubes equally and $q_1/(q_1+q_2) \to 1$ which results in the homogenization of the network; (c$_3$) $m>(n+1)/4 $, the entire flow eventually passes through one of the tubes, and channeling occurs.
% }\label{fig:fig3}
% \end{figure}
\textit{Local Dynamics Model}-- \add{To understand the transition in network behavior during erosion, we focus on a simplified model with only two tubes of the same length $L$ in parallel or series with a general erosion dynamics as $dr_{i}/dt = f(q_{i},r_{i}), i=1,2$ (Fig. S7)}. First, assuming two cylindrical tubes with radii $r_1,r_2$ in series with a given pressure difference of $\delta p = p_r- p_l$, the radius of each tube changes as $dr_i/dt = f(q,r_i),~i=1,2$ where $q=q_1=q_2$. Without loss of generality we assume $r_1>r_2$. Considering the pressure at the junction between tubes $\tilde p_m = (p_m-p_l)/(p_r-p_l)= C_2/(C_1+C_2)$. Time evolution of the middle pressure then follows %
%
\begin{align}
\frac{d\tilde{p}_m}{dt} = \gamma (r_1 f(q,r_2)-r_2 f(q,r_1)).
\end{align}
%
where $\gamma = \sqrt{{2\pi}/{\mu L}}{C_1^{\frac{3}{4}} C_2^{\frac{3}{4}}}/{ (C_1+C_2)^2}$. In the above equation, $r_1=r_2$ is a fixed point solution where $d\tilde p_m/dt =0$ and $p_m=1/2$. Since we assumed $r_1>r_2$, we can see that $\tilde p_m <1/2$, and if ${d\tilde{p}_m}/{dt}>0$, then $\tilde p_m \to 1/2$ and the flow homogenizes. Note that if $f(q,r) = \alpha q^m/r^n$, we find that for any $n>0$ the network homogenizes (SM, Fig. S7). Contrary to tubes in series, when the tubes are in parallel, the net flow $q$ divides between the two tubes in proportion to their conductivity, i.e., $ q_1/q_2 = C_1/C_2$ which results in $q_1/q = \tilde C_1$, where $\tilde C_1 = C_1/(C_1+C_2)$. Note that the dynamics for each pipe in the parallel case can be simplified to $dr_i/dt = g(r_i)$ where $g(r_i) \equiv f(q_i, r_i)$ in which $q_i = \pi r_i^4 \Delta p / 8\mu L$. Given these dynamics, the evolution of the fluid flow ratio becomes $d(q_1/q)/dt = d \tilde C_1/dt= \sqrt{{2\pi}/{\mu L}} \gamma (r_2 g(r_1)-r_1 g(r_2))$. Similarly, it can be seen that $r_1=r_2$ is a fixed point, where flow is equally distributed between the edges resulting in homogenization. If $d \tilde C_1/dt <0$, then the edge with larger radius has a reduced growth rate while the smaller radius edge has an increasing growth until $r_1=r_2$ is reached. This condition results in homogenization, where both edge's radius increases until the fixed point of $r_1=r_2$ is reached. The condition of $d \tilde C_1/dt<0$ is satisfied when
%
\begin{align}
\frac{g(r_1)}{g(r_2)}<\frac{r_1}{r_2}, \quad \forall r_1>r_2>0. \label{eq:condition}
\end{align}
%
\add{Note that the scale-free criteria here (i.e., the dependence on the dimensionless factor $r_1/r_2$) results from the power-law dependence of conductance on radius, i.e., $C\propto r^k (k > 0)$. As a result, in addition to laminar flow (where $C\propto r^4$), the above condition also holds true for nonlaminar flow examples such as molecular flow where $C\propto r^3$ \cite{steckelmacher1966review}. }
In addition, if $d\left(g(r)/r\right)/dr<0$, then Eq.~\eqref{eq:condition} is satisfied, and homogenization would occur.
The above homogenization condition can further be simplified as $g(r)>g'(r)r$, which can also be obtained directly using a linear stability analysis. Given the homogenization condition $g(r)>g'(r)r$, if the erosion rate is sub-linear locally near the initial radius, the network moves towards homogenization. On the other hand, if the erosion rate is super-linear, we expect the parallel tubes to move away from homogenization and channelization occurs. Applying the power law erosion model with $f(q_{i},r_i)=\alpha q_i^m/r_i^n$, it can be shown that $g(r) \propto r^{4m-n} $, and therefore $4m-n=1$ results in no change in the flow ratio $q_1/q$, while $4m-n<1$ results in homogenization condition, and $4m-n>1$ results in channelization (Fig. S7). Since a complex network includes both series and parallel connections, it is plausible that the whole network structure will behave in a similar manner, with an approximate transition in the network's behavior at $ m = (n+1)/4$. This result for $m=1$ reduces to a transition at $n=3$.
% It is to be noted that while the flow ratio remains constant for parallel edges, the connections in series are evolving toward homogenization and that is why we find a difference between evolved network for $n=3$ and the network at $t=0$.
Since series connections are always moving toward homogenization, while parallel connections show a phase transition, we expect the phase transition to be at approximately $n\approx 3$, governed by the parallel connections. This observation is consistent with the numerical simulation results shown in Figs.~\ref{fig:fig2} and S6 (for $m=1$) as well as for additional values of $m$ (Fig.~\ref{fig:fig4}).
% Note, however, that the local dynamics model is only approximate and the numerically observed value of the phase transition happens for a value slightly larger than $n=3$ in Fig. S6.
\add{Note that the fact that local dynamics predict the fate of the overall network in the way described above is a result of the scale-free nature of the aforementioned power-law erosion model. Later, we will discuss richer phenomenology that may arise in the case of physical erosion laws possessing an intrinsic scale.}
% %
% %
\textit{Analysis of generalized model}-- So far we focused on erosion dynamics with $m=1$ in $f(|q_{ij}|,r_{ij})=\alpha |q_{ij}|^m/r_{ij}^n$ since it directly corresponds to erosion laws of interest, i.e. an erosion rate with a linear dependence on fluid-flux, velocity, or shear-rate at the walls.
Considering $m=2$, our model aligns with the transport optimization problem in biological networks~\cite{ronellenfitsch2016global,corson2010fluctuations,hu2013adaptation}.
To test the role of the parameter $m$ in our model, we simulated the general form of erosion dynamics with $f(|q_{ij}|,r_{ij}) = \alpha |q_{ij}|^m/r_{ij}^n$.
The simulation results for a randomly initialized network for different powers of $m$ and $n$ are shown in Fig. \ref{fig:fig4}, where each box shows the final snapshot of the network eroded with the corresponding $m$ and $n$.
Additionally, the prediction of the local dynamics model is shown using the bounding box color (red for channelization and green for homogenization) in Fig. \ref{fig:fig4} (cf., Fig.~S9 showing the heat map for the average change in the order parameter). The dashed black line in Fig. \ref{fig:fig4} shows the the local dynamics model's prediction for the boundary between network's transition to homogeneity or channelization (i.e., $m = (n+1)/4$).
We find that the local dynamics model correctly predicts the fate of the network with the complex topology for different values of $m$ and $n$, and captures the boundary separating channelization/homogenization. We further consider a model where the onset of erosion happens only after a certain threshold (SM, S6 and Fig. S8) and find that the transition remains unchanged at $m=(n+1)/4$, showing robustness to thresholding effects. Additionally, to further test the generality of the local dynamics model, we used a nonlinear function of shear rate as $dr/dt = h(\tau)$ where $\tau=q/r^3$. We found that the prediction of the local dynamics model matches with the direct simulations (SM, S9 and Fig. S10) where it can be used to predict the fate of a network given a general erosion law. \add{Note that for general erosion dynamics, the condition in Eq. \eqref{eq:condition} might hold for some but not all of the pipes at a given time. Furthermore, during the process of erosion, flow is redistributed throughout the network and therefore the flow distribution changes. This dynamical process enables the formation of \emph{multiple} channels, in contrast to the single channels observed for the scale-free erosion laws (SM, S9 and Fig. S10)}
\begin{figure}[!ht]
\centering
\includegraphics[width = 0.45\textwidth]{Fig4.pdf}
\caption{Evolution of a randomly initialized network for various powers of $m$ and $n$ in $f(|q|,r) = \alpha |q|^m/r^n$. The network is randomly initialized with $50\times 50$ randomly distributed pores. The bounding box color shows the prediction of the local dynamics model for the fate of the network: homogenization (blue) or channelization (red). The dashed black line shows the transition boundary between channelization instability and homogenization obtained using local dynamics model, i.e., $m=(n+1)/4$.}\label{fig:fig4}
\end{figure}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
In the case of clogging, the initial dynamics can similarly be captured using our model, however, due to the change in the connectivity of the network, our local dynamics model cannot extend to large time behaviors (SM, S8).
%
\textit{Conclusion}-- {We analyzed the dynamics of porous networks during erosion. We showed that depending on the form of the erosion law
% (namely, its dependence on flux and tube radius)
the network can either move towards homogenization or
% towards developing a
channeling instability. We elucidated the physical origin of this phase transition and how it is achieved using a simplified model. Our results highlight the importance of local dynamics and feedback mechanisms in the network's path toward its asymptotic global behavior \cite{ronellenfitsch2016global,corson2010fluctuations,katifori2010damage,hu2013adaptation,ocko2015feedback}, and allow us to infer the local dynamics using large scale observations. As a result, our model can be used as a bulk behavior proxy for determining the local dynamics of erosion in a system~\cite{mahadevan2012flow}. Interestingly, our results indicates that an erosion model that is local and linearly dependent on shear rate cannot result in channelization (since $m=1,n=3$ and $m=(n+1)/4$). However, we note that if the dependence on the shear rate is non-linear, it will qualitatively map to our model albeit with renormalized values of $n$ and $m$: e.g., a power-law dependence on shear rate with exponent $s$ would lead to $m =s$, $n = 3 s$, implying channelization when $s>1$. \add{It is to be noted that the scale-free nature of our model as discussed after Eq. \eqref{eq:condition} is the main reason for the local dynamics setting the behavior of the whole network. Physical systems often have a scale associated with them, and in such cases, Eq. \eqref{eq:condition} and the condition described just after hold true for some flow rates but not all. Investigating nonlinear erosion dynamics, we found that transitional states are then possible.} Additionally, it would be exciting to test this and other predictions experimentally on model systems, relying on the technological advances in imaging flow profiles in porous materials, as well as extend the study to the geologically relevant case of chemical erosion \cite{edery2014origins,edery2016characterization}, and wormhole formation in geologic formations during CO$_2$ injection \cite{ott2015wormhole,szymczak2009wormhole}. Additionally, the model studied here could become richer by tracking the solute
being eroded through solute concentration using $dr/dt=f(q,r,c)$ where $c$ is the solute concentration, and allow for solute deposition along the porous material~\cite{bizmark2020multiscale,jager2018clogging,jaeger2017mechanism}.
}
\begin{acknowledgments}
We thank the Kavli Foundation, MRSEC DMR-2011754, and DMR-1420570 for their support. We thank Yaniv Edery, Eleni Katifori, and Chris Rycroft
for useful discussions. \add{We would like to thank the anonymous referees for their valuable comments.}
\end{acknowledgments}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \bibliography{ref}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%merlin.mbs apsrev4-1.bst 2010-07-25 4.21a (PWD, AO, DPC) hacked
%Control: key (0)
%Control: author (8) initials jnrlst
%Control: editor formatted (1) identically to author
%Control: production of article title (-1) disabled
%Control: page (0) single
%Control: year (1) truncated
%Control: production of eprint (0) enabled
\begin{thebibliography}{59}%
\makeatletter
\providecommand \@ifxundefined [1]{%
\@ifx{#1\undefined}
}%
\providecommand \@ifnum [1]{%
\ifnum #1\expandafter \@firstoftwo
\else \expandafter \@secondoftwo
\fi
}%
\providecommand \@ifx [1]{%
\ifx #1\expandafter \@firstoftwo
\else \expandafter \@secondoftwo
\fi
}%
\providecommand \natexlab [1]{#1}%
\providecommand \enquote [1]{``#1''}%
\providecommand \bibnamefont [1]{#1}%
\providecommand \bibfnamefont [1]{#1}%
\providecommand \citenamefont [1]{#1}%
\providecommand \href@noop [0]{\@secondoftwo}%
\providecommand \href [0]{\begingroup \@sanitize@url \@href}%
\providecommand \@href[1]{\@@startlink{#1}\@@href}%
\providecommand \@@href[1]{\endgroup#1\@@endlink}%
\providecommand \@sanitize@url [0]{\catcode `\\12\catcode `\$12\catcode
`\&12\catcode `\#12\catcode `\^12\catcode `\_12\catcode `\%12\relax}%
\providecommand \@@startlink[1]{}%
\providecommand \@@endlink[0]{}%
\providecommand \url [0]{\begingroup\@sanitize@url \@url }%
\providecommand \@url [1]{\endgroup\@href {#1}{\urlprefix }}%
\providecommand \urlprefix [0]{URL }%
\providecommand \Eprint [0]{\href }%
\providecommand \doibase [0]{http://dx.doi.org/}%
\providecommand \selectlanguage [0]{\@gobble}%
\providecommand \bibinfo [0]{\@secondoftwo}%
\providecommand \bibfield [0]{\@secondoftwo}%
\providecommand \translation [1]{[#1]}%
\providecommand \BibitemOpen [0]{}%
\providecommand \bibitemStop [0]{}%
\providecommand \bibitemNoStop [0]{.\EOS\space}%
\providecommand \EOS [0]{\spacefactor3000\relax}%
\providecommand \BibitemShut [1]{\csname bibitem#1\endcsname}%
\let\auto@bib@innerbib\@empty
%</preamble>
\bibitem [{\citenamefont {Marbach}\ \emph {et~al.}(2016)\citenamefont
{Marbach}, \citenamefont {Alim}, \citenamefont {Andrew}, \citenamefont
{Pringle},\ and\ \citenamefont {Brenner}}]{marbach2016pruning}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont
{Marbach}}, \bibinfo {author} {\bibfnamefont {K.}~\bibnamefont {Alim}},
\bibinfo {author} {\bibfnamefont {N.}~\bibnamefont {Andrew}}, \bibinfo
{author} {\bibfnamefont {A.}~\bibnamefont {Pringle}}, \ and\ \bibinfo
{author} {\bibfnamefont {M.~P.}\ \bibnamefont {Brenner}},\ }\href@noop {}
{\bibfield {journal} {\bibinfo {journal} {Physical Review Letters}\
}\textbf {\bibinfo {volume} {117}},\ \bibinfo {pages} {178103} (\bibinfo
{year} {2016})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Alim}\ \emph {et~al.}(2013)\citenamefont {Alim},
\citenamefont {Amselem}, \citenamefont {Peaudecerf}, \citenamefont
{Brenner},\ and\ \citenamefont {Pringle}}]{alim2013random}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {K.}~\bibnamefont
{Alim}}, \bibinfo {author} {\bibfnamefont {G.}~\bibnamefont {Amselem}},
\bibinfo {author} {\bibfnamefont {F.}~\bibnamefont {Peaudecerf}}, \bibinfo
{author} {\bibfnamefont {M.~P.}\ \bibnamefont {Brenner}}, \ and\ \bibinfo
{author} {\bibfnamefont {A.}~\bibnamefont {Pringle}},\ }\href@noop {}
{\bibfield {journal} {\bibinfo {journal} {Proceedings of the National
Academy of Sciences}\ }\textbf {\bibinfo {volume} {110}},\ \bibinfo {pages}
{13306} (\bibinfo {year} {2013})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Tero}\ \emph {et~al.}(2010)\citenamefont {Tero},
\citenamefont {Takagi}, \citenamefont {Saigusa}, \citenamefont {Ito},
\citenamefont {Bebber}, \citenamefont {Fricker}, \citenamefont {Yumiki},
\citenamefont {Kobayashi},\ and\ \citenamefont {Nakagaki}}]{tero2010rules}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{Tero}}, \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Takagi}},
\bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Saigusa}}, \bibinfo
{author} {\bibfnamefont {K.}~\bibnamefont {Ito}}, \bibinfo {author}
{\bibfnamefont {D.~P.}\ \bibnamefont {Bebber}}, \bibinfo {author}
{\bibfnamefont {M.~D.}\ \bibnamefont {Fricker}}, \bibinfo {author}
{\bibfnamefont {K.}~\bibnamefont {Yumiki}}, \bibinfo {author} {\bibfnamefont
{R.}~\bibnamefont {Kobayashi}}, \ and\ \bibinfo {author} {\bibfnamefont
{T.}~\bibnamefont {Nakagaki}},\ }\href@noop {} {\bibfield {journal}
{\bibinfo {journal} {Science}\ }\textbf {\bibinfo {volume} {327}},\ \bibinfo
{pages} {439} (\bibinfo {year} {2010})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Heaton}\ \emph {et~al.}(2010)\citenamefont {Heaton},
\citenamefont {L{\'o}pez}, \citenamefont {Maini}, \citenamefont {Fricker},\
and\ \citenamefont {Jones}}]{heaton2010growth}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {L.~L.}\ \bibnamefont
{Heaton}}, \bibinfo {author} {\bibfnamefont {E.}~\bibnamefont {L{\'o}pez}},
\bibinfo {author} {\bibfnamefont {P.~K.}\ \bibnamefont {Maini}}, \bibinfo
{author} {\bibfnamefont {M.~D.}\ \bibnamefont {Fricker}}, \ and\ \bibinfo
{author} {\bibfnamefont {N.~S.}\ \bibnamefont {Jones}},\ }\href@noop {}
{\bibfield {journal} {\bibinfo {journal} {Proceedings of the Royal Society
B: Biological Sciences}\ }\textbf {\bibinfo {volume} {277}},\ \bibinfo
{pages} {3265} (\bibinfo {year} {2010})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Schlesinger}(1999)}]{schlesinger1999carbon}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {W.~H.}\ \bibnamefont
{Schlesinger}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Science}\ }\textbf {\bibinfo {volume} {284}},\ \bibinfo {pages} {2095}
(\bibinfo {year} {1999})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Winkler}\ and\ \citenamefont
{Nur}(1979)}]{winkler1979pore}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {K.}~\bibnamefont
{Winkler}}\ and\ \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Nur}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Geophysical
Research Letters}\ }\textbf {\bibinfo {volume} {6}},\ \bibinfo {pages} {1}
(\bibinfo {year} {1979})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Batzle}\ and\ \citenamefont
{Wang}(1992)}]{batzle1992seismic}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont
{Batzle}}\ and\ \bibinfo {author} {\bibfnamefont {Z.}~\bibnamefont {Wang}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Geophysics}\
}\textbf {\bibinfo {volume} {57}},\ \bibinfo {pages} {1396} (\bibinfo {year}
{1992})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Cohen}\ and\ \citenamefont
{Rothman}(2015)}]{cohen2015mechanisms}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {Y.}~\bibnamefont
{Cohen}}\ and\ \bibinfo {author} {\bibfnamefont {D.~H.}\ \bibnamefont
{Rothman}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences}\ }\textbf {\bibinfo {volume} {471}},\ \bibinfo {pages} {20140853}
(\bibinfo {year} {2015})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Duduta}\ \emph {et~al.}(2011)\citenamefont {Duduta},
\citenamefont {Ho}, \citenamefont {Wood}, \citenamefont {Limthongkul},
\citenamefont {Brunini}, \citenamefont {Carter},\ and\ \citenamefont
{Chiang}}]{duduta2011semi}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont
{Duduta}}, \bibinfo {author} {\bibfnamefont {B.}~\bibnamefont {Ho}}, \bibinfo
{author} {\bibfnamefont {V.~C.}\ \bibnamefont {Wood}}, \bibinfo {author}
{\bibfnamefont {P.}~\bibnamefont {Limthongkul}}, \bibinfo {author}
{\bibfnamefont {V.~E.}\ \bibnamefont {Brunini}}, \bibinfo {author}
{\bibfnamefont {W.~C.}\ \bibnamefont {Carter}}, \ and\ \bibinfo {author}
{\bibfnamefont {Y.-M.}\ \bibnamefont {Chiang}},\ }\href@noop {} {\bibfield
{journal} {\bibinfo {journal} {Advanced Energy Materials}\ }\textbf
{\bibinfo {volume} {1}},\ \bibinfo {pages} {511} (\bibinfo {year}
{2011})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Sun}\ \emph {et~al.}(2019)\citenamefont {Sun},
\citenamefont {Zhu}, \citenamefont {Baumann}, \citenamefont {Peng},
\citenamefont {Xu}, \citenamefont {Shakir}, \citenamefont {Huang},\ and\
\citenamefont {Duan}}]{sun2019hierarchical}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {H.}~\bibnamefont
{Sun}}, \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Zhu}}, \bibinfo
{author} {\bibfnamefont {D.}~\bibnamefont {Baumann}}, \bibinfo {author}
{\bibfnamefont {L.}~\bibnamefont {Peng}}, \bibinfo {author} {\bibfnamefont
{Y.}~\bibnamefont {Xu}}, \bibinfo {author} {\bibfnamefont {I.}~\bibnamefont
{Shakir}}, \bibinfo {author} {\bibfnamefont {Y.}~\bibnamefont {Huang}}, \
and\ \bibinfo {author} {\bibfnamefont {X.}~\bibnamefont {Duan}},\ }\href@noop
{} {\bibfield {journal} {\bibinfo {journal} {Nature Reviews Materials}\
}\textbf {\bibinfo {volume} {4}},\ \bibinfo {pages} {45} (\bibinfo {year}
{2019})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Smith}\ and\ \citenamefont
{Bazant}(2017)}]{smith2017multiphase}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {R.~B.}\ \bibnamefont
{Smith}}\ and\ \bibinfo {author} {\bibfnamefont {M.~Z.}\ \bibnamefont
{Bazant}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Journal of The Electrochemical Society}\ }\textbf {\bibinfo {volume}
{164}},\ \bibinfo {pages} {E3291} (\bibinfo {year} {2017})}\BibitemShut
{NoStop}%
\bibitem [{\citenamefont {Ferguson}\ and\ \citenamefont
{Bazant}(2012)}]{ferguson2012nonequilibrium}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {T.~R.}\ \bibnamefont
{Ferguson}}\ and\ \bibinfo {author} {\bibfnamefont {M.~Z.}\ \bibnamefont
{Bazant}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Journal of The Electrochemical Society}\ }\textbf {\bibinfo {volume}
{159}},\ \bibinfo {pages} {A1967} (\bibinfo {year} {2012})}\BibitemShut
{NoStop}%
\bibitem [{\citenamefont {Rad}\ \emph {et~al.}(2013)\citenamefont {Rad},
\citenamefont {Shokri},\ and\ \citenamefont {Sahimi}}]{rad2013pore}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {M.~N.}\ \bibnamefont
{Rad}}, \bibinfo {author} {\bibfnamefont {N.}~\bibnamefont {Shokri}}, \ and\
\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Sahimi}},\ }\href@noop {}
{\bibfield {journal} {\bibinfo {journal} {Physical Review E}\ }\textbf
{\bibinfo {volume} {88}},\ \bibinfo {pages} {032404} (\bibinfo {year}
{2013})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Herzig}\ \emph {et~al.}(1970)\citenamefont {Herzig},
\citenamefont {Leclerc},\ and\ \citenamefont {Goff}}]{herzig1970flow}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {J.}~\bibnamefont
{Herzig}}, \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Leclerc}}, \
and\ \bibinfo {author} {\bibfnamefont {P.~L.}\ \bibnamefont {Goff}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Industrial \&
Engineering Chemistry}\ }\textbf {\bibinfo {volume} {62}},\ \bibinfo {pages}
{8} (\bibinfo {year} {1970})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Tien}\ and\ \citenamefont
{Payatakes}(1979)}]{tien1979advances}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {C.}~\bibnamefont
{Tien}}\ and\ \bibinfo {author} {\bibfnamefont {A.~C.}\ \bibnamefont
{Payatakes}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{AIChE Journal}\ }\textbf {\bibinfo {volume} {25}},\ \bibinfo {pages} {737}
(\bibinfo {year} {1979})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Jaisi}\ \emph {et~al.}(2008)\citenamefont {Jaisi},
\citenamefont {Saleh}, \citenamefont {Blake},\ and\ \citenamefont
{Elimelech}}]{jaisi2008transport}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {D.~P.}\ \bibnamefont
{Jaisi}}, \bibinfo {author} {\bibfnamefont {N.~B.}\ \bibnamefont {Saleh}},
\bibinfo {author} {\bibfnamefont {R.~E.}\ \bibnamefont {Blake}}, \ and\
\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Elimelech}},\ }\href@noop
{} {\bibfield {journal} {\bibinfo {journal} {Environmental Science \&
Technology}\ }\textbf {\bibinfo {volume} {42}},\ \bibinfo {pages} {8317}
(\bibinfo {year} {2008})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Carrel}\ \emph {et~al.}(2018)\citenamefont {Carrel},
\citenamefont {Morales}, \citenamefont {Beltran}, \citenamefont {Derlon},
\citenamefont {Kaufmann}, \citenamefont {Morgenroth},\ and\ \citenamefont
{Holzner}}]{carrel2018biofilms}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {M.}~\bibnamefont
{Carrel}}, \bibinfo {author} {\bibfnamefont {V.~L.}\ \bibnamefont {Morales}},
\bibinfo {author} {\bibfnamefont {M.~A.}\ \bibnamefont {Beltran}}, \bibinfo
{author} {\bibfnamefont {N.}~\bibnamefont {Derlon}}, \bibinfo {author}
{\bibfnamefont {R.}~\bibnamefont {Kaufmann}}, \bibinfo {author}
{\bibfnamefont {E.}~\bibnamefont {Morgenroth}}, \ and\ \bibinfo {author}
{\bibfnamefont {M.}~\bibnamefont {Holzner}},\ }\href@noop {} {\bibfield
{journal} {\bibinfo {journal} {Water Research}\ }\textbf {\bibinfo {volume}
{134}},\ \bibinfo {pages} {280} (\bibinfo {year} {2018})}\BibitemShut
{NoStop}%
\bibitem [{\citenamefont {Seymour}\ \emph {et~al.}(2004)\citenamefont
{Seymour}, \citenamefont {Gage}, \citenamefont {Codd},\ and\ \citenamefont
{Gerlach}}]{seymour2004anomalous}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {J.~D.}\ \bibnamefont
{Seymour}}, \bibinfo {author} {\bibfnamefont {J.~P.}\ \bibnamefont {Gage}},
\bibinfo {author} {\bibfnamefont {S.~L.}\ \bibnamefont {Codd}}, \ and\
\bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Gerlach}},\ }\href@noop
{} {\bibfield {journal} {\bibinfo {journal} {Physical Review Letters}\
}\textbf {\bibinfo {volume} {93}},\ \bibinfo {pages} {198103} (\bibinfo
{year} {2004})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Lake}\ \emph {et~al.}(2014)\citenamefont {Lake},
\citenamefont {Johns}, \citenamefont {Rossen}, \citenamefont {Pope} \emph
{et~al.}}]{lake2014fundamentals}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {L.~W.}\ \bibnamefont
{Lake}}, \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Johns}},
\bibinfo {author} {\bibfnamefont {B.}~\bibnamefont {Rossen}}, \bibinfo
{author} {\bibfnamefont {G.~A.}\ \bibnamefont {Pope}}, \emph {et~al.},\
}\bibfield {booktitle} {\emph {\bibinfo {booktitle} {Fundamentals of
Enhanced Oil Recovery}},\ }\href@noop {} {\ (\bibinfo {year}
{2014})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Parsa}\ \emph {et~al.}(2020)\citenamefont {Parsa},
\citenamefont {Santanach-Carreras}, \citenamefont {Xiao},\ and\ \citenamefont
{Weitz}}]{parsa2020origin}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont
{Parsa}}, \bibinfo {author} {\bibfnamefont {E.}~\bibnamefont
{Santanach-Carreras}}, \bibinfo {author} {\bibfnamefont {L.}~\bibnamefont
{Xiao}}, \ and\ \bibinfo {author} {\bibfnamefont {D.~A.}\ \bibnamefont
{Weitz}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Physical Review Fluids}\ }\textbf {\bibinfo {volume} {5}},\ \bibinfo {pages}
{022001} (\bibinfo {year} {2020})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Schorghofer}\ \emph {et~al.}(2004)\citenamefont
{Schorghofer}, \citenamefont {Jensen}, \citenamefont {Kudrolli},\ and\
\citenamefont {Rothman}}]{schorghofer2004spontaneous}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {N.}~\bibnamefont
{Schorghofer}}, \bibinfo {author} {\bibfnamefont {B.}~\bibnamefont {Jensen}},
\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Kudrolli}}, \ and\
\bibinfo {author} {\bibfnamefont {D.~H.}\ \bibnamefont {Rothman}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Journal of Fluid
Mechanics}\ }\textbf {\bibinfo {volume} {503}},\ \bibinfo {pages} {357}
(\bibinfo {year} {2004})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Mahadevan}\ \emph {et~al.}(2012)\citenamefont
{Mahadevan}, \citenamefont {Orpe}, \citenamefont {Kudrolli},\ and\
\citenamefont {Mahadevan}}]{mahadevan2012flow}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{Mahadevan}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Orpe}},
\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Kudrolli}}, \ and\
\bibinfo {author} {\bibfnamefont {L.}~\bibnamefont {Mahadevan}},\ }\href@noop
{} {\bibfield {journal} {\bibinfo {journal} {Europhysics Letters}\ }\textbf
{\bibinfo {volume} {98}},\ \bibinfo {pages} {58003} (\bibinfo {year}
{2012})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Akanji}\ and\ \citenamefont
{Matthai}(2010)}]{akanji2010finite}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {L.~T.}\ \bibnamefont
{Akanji}}\ and\ \bibinfo {author} {\bibfnamefont {S.~K.}\ \bibnamefont
{Matthai}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Transport in Porous Media}\ }\textbf {\bibinfo {volume} {81}},\ \bibinfo
{pages} {241} (\bibinfo {year} {2010})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Fatt}\ \emph {et~al.}(1956)\citenamefont {Fatt} \emph
{et~al.}}]{fatt1956network}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {I.}~\bibnamefont
{Fatt}} \emph {et~al.},\ }\href@noop {} {\bibfield {journal} {\bibinfo
{journal} {Transactions of the AIME}\ }\textbf {\bibinfo {volume} {207}},\
\bibinfo {pages} {144} (\bibinfo {year} {1956})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Blunt}\ \emph {et~al.}(2013)\citenamefont {Blunt},
\citenamefont {Bijeljic}, \citenamefont {Dong}, \citenamefont {Gharbi},
\citenamefont {Iglauer}, \citenamefont {Mostaghimi}, \citenamefont
{Paluszny},\ and\ \citenamefont {Pentland}}]{blunt2013pore}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {M.~J.}\ \bibnamefont
{Blunt}}, \bibinfo {author} {\bibfnamefont {B.}~\bibnamefont {Bijeljic}},
\bibinfo {author} {\bibfnamefont {H.}~\bibnamefont {Dong}}, \bibinfo {author}
{\bibfnamefont {O.}~\bibnamefont {Gharbi}}, \bibinfo {author} {\bibfnamefont
{S.}~\bibnamefont {Iglauer}}, \bibinfo {author} {\bibfnamefont
{P.}~\bibnamefont {Mostaghimi}}, \bibinfo {author} {\bibfnamefont
{A.}~\bibnamefont {Paluszny}}, \ and\ \bibinfo {author} {\bibfnamefont
{C.}~\bibnamefont {Pentland}},\ }\href@noop {} {\bibfield {journal}
{\bibinfo {journal} {Advances in Water Resources}\ }\textbf {\bibinfo
{volume} {51}},\ \bibinfo {pages} {197} (\bibinfo {year} {2013})}\BibitemShut
{NoStop}%
\bibitem [{\citenamefont {Stoop}\ \emph {et~al.}(2019)\citenamefont {Stoop},
\citenamefont {Waisbord}, \citenamefont {Kantsler}, \citenamefont {Heinonen},
\citenamefont {Guasto},\ and\ \citenamefont {Dunkel}}]{stoop2019disorder}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {N.}~\bibnamefont
{Stoop}}, \bibinfo {author} {\bibfnamefont {N.}~\bibnamefont {Waisbord}},
\bibinfo {author} {\bibfnamefont {V.}~\bibnamefont {Kantsler}}, \bibinfo
{author} {\bibfnamefont {V.}~\bibnamefont {Heinonen}}, \bibinfo {author}
{\bibfnamefont {J.~S.}\ \bibnamefont {Guasto}}, \ and\ \bibinfo {author}
{\bibfnamefont {J.}~\bibnamefont {Dunkel}},\ }\href@noop {} {\bibfield
{journal} {\bibinfo {journal} {Journal of Non-Newtonian Fluid Mechanics}\
}\textbf {\bibinfo {volume} {268}},\ \bibinfo {pages} {66} (\bibinfo {year}
{2019})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Bryant}\ \emph {et~al.}(1993)\citenamefont {Bryant},
\citenamefont {King},\ and\ \citenamefont {Mellor}}]{bryant1993network}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {S.~L.}\ \bibnamefont
{Bryant}}, \bibinfo {author} {\bibfnamefont {P.~R.}\ \bibnamefont {King}}, \
and\ \bibinfo {author} {\bibfnamefont {D.~W.}\ \bibnamefont {Mellor}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Transport in
Porous Media}\ }\textbf {\bibinfo {volume} {11}},\ \bibinfo {pages} {53}
(\bibinfo {year} {1993})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Dong}\ and\ \citenamefont
{Blunt}(2009)}]{dong2009pore}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {H.}~\bibnamefont
{Dong}}\ and\ \bibinfo {author} {\bibfnamefont {M.~J.}\ \bibnamefont
{Blunt}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Physical Review E}\ }\textbf {\bibinfo {volume} {80}},\ \bibinfo {pages}
{036307} (\bibinfo {year} {2009})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Blunt}\ and\ \citenamefont
{Scher}(1995)}]{blunt1995pore}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {M.~J.}\ \bibnamefont
{Blunt}}\ and\ \bibinfo {author} {\bibfnamefont {H.}~\bibnamefont {Scher}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Physical Review
E}\ }\textbf {\bibinfo {volume} {52}},\ \bibinfo {pages} {6387} (\bibinfo
{year} {1995})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Alim}\ \emph {et~al.}(2017)\citenamefont {Alim},
\citenamefont {Parsa}, \citenamefont {Weitz},\ and\ \citenamefont
{Brenner}}]{alim2017local}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {K.}~\bibnamefont
{Alim}}, \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Parsa}},
\bibinfo {author} {\bibfnamefont {D.~A.}\ \bibnamefont {Weitz}}, \ and\
\bibinfo {author} {\bibfnamefont {M.~P.}\ \bibnamefont {Brenner}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Physical Review
Letters}\ }\textbf {\bibinfo {volume} {119}},\ \bibinfo {pages} {144501}
(\bibinfo {year} {2017})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Parsa}\ \emph {et~al.}(2021)\citenamefont {Parsa},
\citenamefont {Zareei}, \citenamefont {Santanach-Carreras}, \citenamefont
{Morris}, \citenamefont {Amir}, \citenamefont {Xiao},\ and\ \citenamefont
{Weitz}}]{shima2021}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont
{Parsa}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Zareei}},
\bibinfo {author} {\bibfnamefont {E.}~\bibnamefont {Santanach-Carreras}},
\bibinfo {author} {\bibfnamefont {E.~J.}\ \bibnamefont {Morris}}, \bibinfo
{author} {\bibfnamefont {A.}~\bibnamefont {Amir}}, \bibinfo {author}
{\bibfnamefont {L.}~\bibnamefont {Xiao}}, \ and\ \bibinfo {author}
{\bibfnamefont {D.~A.}\ \bibnamefont {Weitz}},\ }\href@noop {} {\bibfield
{journal} {\bibinfo {journal} {Physical Review Fluids}\ }\textbf {\bibinfo
{volume} {6}},\ \bibinfo {pages} {L082302} (\bibinfo {year}
{2021})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Fraggedakis}\ \emph {et~al.}(2021)\citenamefont
{Fraggedakis}, \citenamefont {Chaparian},\ and\ \citenamefont
{Tammisola}}]{fraggedakis_chaparian_tammisola_2021}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {D.}~\bibnamefont
{Fraggedakis}}, \bibinfo {author} {\bibfnamefont {E.}~\bibnamefont
{Chaparian}}, \ and\ \bibinfo {author} {\bibfnamefont {O.}~\bibnamefont
{Tammisola}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Journal of Fluid Mechanics}\ }\textbf {\bibinfo {volume} {911}},\ \bibinfo
{pages} {A58} (\bibinfo {year} {2021})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Datta}\ \emph {et~al.}(2013)\citenamefont {Datta},
\citenamefont {Chiang}, \citenamefont {Ramakrishnan},\ and\ \citenamefont
{Weitz}}]{datta2013spatial}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {S.~S.}\ \bibnamefont
{Datta}}, \bibinfo {author} {\bibfnamefont {H.}~\bibnamefont {Chiang}},
\bibinfo {author} {\bibfnamefont {T.}~\bibnamefont {Ramakrishnan}}, \ and\
\bibinfo {author} {\bibfnamefont {D.~A.}\ \bibnamefont {Weitz}},\ }\href@noop
{} {\bibfield {journal} {\bibinfo {journal} {Physical Review Letters}\
}\textbf {\bibinfo {volume} {111}},\ \bibinfo {pages} {064501} (\bibinfo
{year} {2013})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {J{\"a}ger}\ \emph {et~al.}(2017)\citenamefont
{J{\"a}ger}, \citenamefont {Mendoza},\ and\ \citenamefont
{Herrmann}}]{jager2017channelization}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {R.}~\bibnamefont
{J{\"a}ger}}, \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Mendoza}},
\ and\ \bibinfo {author} {\bibfnamefont {H.~J.}\ \bibnamefont {Herrmann}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Physical Review
E}\ }\textbf {\bibinfo {volume} {95}},\ \bibinfo {pages} {013110} (\bibinfo
{year} {2017})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Ristroph}\ \emph {et~al.}(2012)\citenamefont
{Ristroph}, \citenamefont {Moore}, \citenamefont {Childress}, \citenamefont
{Shelley},\ and\ \citenamefont {Zhang}}]{ristroph2012sculpting}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {L.}~\bibnamefont
{Ristroph}}, \bibinfo {author} {\bibfnamefont {M.~N.}\ \bibnamefont {Moore}},
\bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Childress}}, \bibinfo
{author} {\bibfnamefont {M.~J.}\ \bibnamefont {Shelley}}, \ and\ \bibinfo
{author} {\bibfnamefont {J.}~\bibnamefont {Zhang}},\ }\href@noop {}
{\bibfield {journal} {\bibinfo {journal} {Proceedings of the National
Academy of Sciences}\ }\textbf {\bibinfo {volume} {109}},\ \bibinfo {pages}
{19606} (\bibinfo {year} {2012})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Wan}\ and\ \citenamefont
{Fell}(2004)}]{wan2004investigation}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {C.~F.}\ \bibnamefont
{Wan}}\ and\ \bibinfo {author} {\bibfnamefont {R.}~\bibnamefont {Fell}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Journal of
Geotechnical and Geoenvironmental Engineering}\ }\textbf {\bibinfo {volume}
{130}},\ \bibinfo {pages} {373} (\bibinfo {year} {2004})}\BibitemShut
{NoStop}%
\bibitem [{\citenamefont {White}\ and\ \citenamefont
{Majdalani}(2006)}]{white2006viscous}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {F.~M.}\ \bibnamefont
{White}}\ and\ \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont
{Majdalani}},\ }\href@noop {} {\emph {\bibinfo {title} {Viscous fluid
flow}}},\ Vol.~\bibinfo {volume} {3}\ (\bibinfo {publisher} {McGraw-Hill New
York},\ \bibinfo {year} {2006})\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Chen}\ \emph {et~al.}(2012)\citenamefont {Chen},
\citenamefont {Jiang}, \citenamefont {Li}, \citenamefont {Hu}, \citenamefont
{Bu}, \citenamefont {Cai},\ and\ \citenamefont {Du}}]{chen2012haemodynamics}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {Q.}~\bibnamefont
{Chen}}, \bibinfo {author} {\bibfnamefont {L.}~\bibnamefont {Jiang}},
\bibinfo {author} {\bibfnamefont {C.}~\bibnamefont {Li}}, \bibinfo {author}
{\bibfnamefont {D.}~\bibnamefont {Hu}}, \bibinfo {author} {\bibfnamefont
{J.-w.}\ \bibnamefont {Bu}}, \bibinfo {author} {\bibfnamefont
{D.}~\bibnamefont {Cai}}, \ and\ \bibinfo {author} {\bibfnamefont {J.-l.}\
\bibnamefont {Du}},\ }\href@noop {} {\ (\bibinfo {year} {2012})}\BibitemShut
{NoStop}%
\bibitem [{\citenamefont {Hacking}\ \emph {et~al.}(1996)\citenamefont
{Hacking}, \citenamefont {VanBavel},\ and\ \citenamefont
{Spaan}}]{hacking1996shear}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {W.}~\bibnamefont
{Hacking}}, \bibinfo {author} {\bibfnamefont {E.}~\bibnamefont {VanBavel}}, \
and\ \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Spaan}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {American Journal
of Physiology-Heart and Circulatory Physiology}\ }\textbf {\bibinfo {volume}
{270}},\ \bibinfo {pages} {H364} (\bibinfo {year} {1996})}\BibitemShut
{NoStop}%
\bibitem [{\citenamefont {Kudrolli}\ and\ \citenamefont
{Clotet}(2016)}]{kudrolli2016evolution}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{Kudrolli}}\ and\ \bibinfo {author} {\bibfnamefont {X.}~\bibnamefont
{Clotet}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Physical Review Letters}\ }\textbf {\bibinfo {volume} {117}},\ \bibinfo
{pages} {028001} (\bibinfo {year} {2016})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Derr}\ \emph {et~al.}(2020)\citenamefont {Derr},
\citenamefont {Fronk}, \citenamefont {Weber}, \citenamefont {Mahadevan},
\citenamefont {Rycroft},\ and\ \citenamefont {Mahadevan}}]{derr2020flow}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {N.~J.}\ \bibnamefont
{Derr}}, \bibinfo {author} {\bibfnamefont {D.~C.}\ \bibnamefont {Fronk}},
\bibinfo {author} {\bibfnamefont {C.~A.}\ \bibnamefont {Weber}}, \bibinfo
{author} {\bibfnamefont {A.}~\bibnamefont {Mahadevan}}, \bibinfo {author}
{\bibfnamefont {C.~H.}\ \bibnamefont {Rycroft}}, \ and\ \bibinfo {author}
{\bibfnamefont {L.}~\bibnamefont {Mahadevan}},\ }\href@noop {} {\bibfield
{journal} {\bibinfo {journal} {Physical Review Letters}\ }\textbf {\bibinfo
{volume} {125}},\ \bibinfo {pages} {158002} (\bibinfo {year}
{2020})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Steeb}\ \emph {et~al.}()\citenamefont {Steeb},
\citenamefont {Diebels},\ and\ \citenamefont
{Vardoulakis}}]{steeb2007modeling}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {H.}~\bibnamefont
{Steeb}}, \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Diebels}}, \
and\ \bibinfo {author} {\bibfnamefont {I.}~\bibnamefont {Vardoulakis}},\
}\enquote {\bibinfo {title} {Modeling internal erosion in porous media},}\
in\ \href@noop {} {\emph {\bibinfo {booktitle} {Computer Applications In
Geotechnical Engineering}}},\ pp.\ \bibinfo {pages} {1--10}\BibitemShut
{NoStop}%
\bibitem [{\citenamefont {Marot}\ \emph {et~al.}(2012)\citenamefont {Marot},
\citenamefont {Le}, \citenamefont {Garnier}, \citenamefont {Thorel},\ and\
\citenamefont {Audrain}}]{marot2012study}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {D.}~\bibnamefont
{Marot}}, \bibinfo {author} {\bibfnamefont {V.~D.}\ \bibnamefont {Le}},
\bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Garnier}}, \bibinfo
{author} {\bibfnamefont {L.}~\bibnamefont {Thorel}}, \ and\ \bibinfo {author}
{\bibfnamefont {P.}~\bibnamefont {Audrain}},\ }\href@noop {} {\bibfield
{journal} {\bibinfo {journal} {European Journal of Environmental and Civil
Engineering}\ }\textbf {\bibinfo {volume} {16}},\ \bibinfo {pages} {1}
(\bibinfo {year} {2012})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Sibille}\ \emph {et~al.}(2015)\citenamefont
{Sibille}, \citenamefont {Lomin{\'e}}, \citenamefont {Poullain},
\citenamefont {Sail},\ and\ \citenamefont {Marot}}]{sibille2015internal}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {L.}~\bibnamefont
{Sibille}}, \bibinfo {author} {\bibfnamefont {F.}~\bibnamefont {Lomin{\'e}}},
\bibinfo {author} {\bibfnamefont {P.}~\bibnamefont {Poullain}}, \bibinfo
{author} {\bibfnamefont {Y.}~\bibnamefont {Sail}}, \ and\ \bibinfo {author}
{\bibfnamefont {D.}~\bibnamefont {Marot}},\ }\href@noop {} {\bibfield
{journal} {\bibinfo {journal} {Hydrological Processes}\ }\textbf {\bibinfo
{volume} {29}},\ \bibinfo {pages} {2149} (\bibinfo {year}
{2015})}\BibitemShut {NoStop}%
\bibitem [{Note1()}]{Note1}%
\BibitemOpen
\bibinfo {note} {The order parameter defined here is inspired by the
participation ratio (PR) employed to quantify the localization of an
eigenstate in the analysis of Anderson localization~\cite
{kramer1993localization}.}\BibitemShut {Stop}%
\bibitem [{\citenamefont {Steckelmacher}(1966)}]{steckelmacher1966review}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {W.}~\bibnamefont
{Steckelmacher}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Vacuum}\ }\textbf {\bibinfo {volume} {16}},\ \bibinfo {pages} {561}
(\bibinfo {year} {1966})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Ronellenfitsch}\ and\ \citenamefont
{Katifori}(2016)}]{ronellenfitsch2016global}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {H.}~\bibnamefont
{Ronellenfitsch}}\ and\ \bibinfo {author} {\bibfnamefont {E.}~\bibnamefont
{Katifori}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Physical Review Letters}\ }\textbf {\bibinfo {volume} {117}},\ \bibinfo
{pages} {138301} (\bibinfo {year} {2016})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Corson}(2010)}]{corson2010fluctuations}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {F.}~\bibnamefont
{Corson}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Physical Review Letters}\ }\textbf {\bibinfo {volume} {104}},\ \bibinfo
{pages} {048703} (\bibinfo {year} {2010})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Katifori}\ \emph {et~al.}(2010)\citenamefont
{Katifori}, \citenamefont {Sz{\"o}ll{\H{o}}si},\ and\ \citenamefont
{Magnasco}}]{katifori2010damage}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {E.}~\bibnamefont
{Katifori}}, \bibinfo {author} {\bibfnamefont {G.~J.}\ \bibnamefont
{Sz{\"o}ll{\H{o}}si}}, \ and\ \bibinfo {author} {\bibfnamefont {M.~O.}\
\bibnamefont {Magnasco}},\ }\href@noop {} {\bibfield {journal} {\bibinfo
{journal} {Physical Review Letters}\ }\textbf {\bibinfo {volume} {104}},\
\bibinfo {pages} {048704} (\bibinfo {year} {2010})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Hu}\ and\ \citenamefont
{Cai}(2013)}]{hu2013adaptation}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {D.}~\bibnamefont
{Hu}}\ and\ \bibinfo {author} {\bibfnamefont {D.}~\bibnamefont {Cai}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Physical Review
Letters}\ }\textbf {\bibinfo {volume} {111}},\ \bibinfo {pages} {138701}
(\bibinfo {year} {2013})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Ocko}\ and\ \citenamefont
{Mahadevan}(2015)}]{ocko2015feedback}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {S.~A.}\ \bibnamefont
{Ocko}}\ and\ \bibinfo {author} {\bibfnamefont {L.}~\bibnamefont
{Mahadevan}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Physical Review Letters}\ }\textbf {\bibinfo {volume} {114}},\ \bibinfo
{pages} {134501} (\bibinfo {year} {2015})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Edery}\ \emph {et~al.}(2014)\citenamefont {Edery},
\citenamefont {Guadagnini}, \citenamefont {Scher},\ and\ \citenamefont
{Berkowitz}}]{edery2014origins}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {Y.}~\bibnamefont
{Edery}}, \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Guadagnini}},
\bibinfo {author} {\bibfnamefont {H.}~\bibnamefont {Scher}}, \ and\ \bibinfo
{author} {\bibfnamefont {B.}~\bibnamefont {Berkowitz}},\ }\href@noop {}
{\bibfield {journal} {\bibinfo {journal} {Water Resources Research}\
}\textbf {\bibinfo {volume} {50}},\ \bibinfo {pages} {1490} (\bibinfo {year}
{2014})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Edery}\ \emph {et~al.}(2016)\citenamefont {Edery},
\citenamefont {Porta}, \citenamefont {Guadagnini}, \citenamefont {Scher},\
and\ \citenamefont {Berkowitz}}]{edery2016characterization}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {Y.}~\bibnamefont
{Edery}}, \bibinfo {author} {\bibfnamefont {G.~M.}\ \bibnamefont {Porta}},
\bibinfo {author} {\bibfnamefont {A.}~\bibnamefont {Guadagnini}}, \bibinfo
{author} {\bibfnamefont {H.}~\bibnamefont {Scher}}, \ and\ \bibinfo {author}
{\bibfnamefont {B.}~\bibnamefont {Berkowitz}},\ }\href@noop {} {\bibfield
{journal} {\bibinfo {journal} {Transport in Porous Media}\ }\textbf
{\bibinfo {volume} {115}},\ \bibinfo {pages} {291} (\bibinfo {year}
{2016})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Ott}\ and\ \citenamefont
{Oedai}(2015)}]{ott2015wormhole}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {H.}~\bibnamefont
{Ott}}\ and\ \bibinfo {author} {\bibfnamefont {S.}~\bibnamefont {Oedai}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Geophysical
Research Letters}\ }\textbf {\bibinfo {volume} {42}},\ \bibinfo {pages}
{2270} (\bibinfo {year} {2015})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Szymczak}\ and\ \citenamefont
{Ladd}(2009)}]{szymczak2009wormhole}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {P.}~\bibnamefont
{Szymczak}}\ and\ \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{Ladd}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Journal
of Geophysical Research: Solid Earth}\ }\textbf {\bibinfo {volume} {114}}
(\bibinfo {year} {2009})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Bizmark}\ \emph {et~al.}(2020)\citenamefont
{Bizmark}, \citenamefont {Schneider}, \citenamefont {Priestley},\ and\
\citenamefont {Datta}}]{bizmark2020multiscale}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {N.}~\bibnamefont
{Bizmark}}, \bibinfo {author} {\bibfnamefont {J.}~\bibnamefont {Schneider}},
\bibinfo {author} {\bibfnamefont {R.~D.}\ \bibnamefont {Priestley}}, \ and\
\bibinfo {author} {\bibfnamefont {S.~S.}\ \bibnamefont {Datta}},\ }\href@noop
{} {\bibfield {journal} {\bibinfo {journal} {Science Advances}\ }\textbf
{\bibinfo {volume} {6}},\ \bibinfo {pages} {eabc2530} (\bibinfo {year}
{2020})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {J{\"a}ger}\ \emph {et~al.}(2018)\citenamefont
{J{\"a}ger}, \citenamefont {Mendoza},\ and\ \citenamefont
{Herrmann}}]{jager2018clogging}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {R.}~\bibnamefont
{J{\"a}ger}}, \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Mendoza}},
\ and\ \bibinfo {author} {\bibfnamefont {H.~J.}\ \bibnamefont {Herrmann}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Physical Review
Fluids}\ }\textbf {\bibinfo {volume} {3}},\ \bibinfo {pages} {074302}
(\bibinfo {year} {2018})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Jaeger}\ \emph {et~al.}(2017)\citenamefont {Jaeger},
\citenamefont {Mendoza},\ and\ \citenamefont
{Herrmann}}]{jaeger2017mechanism}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {R.}~\bibnamefont
{Jaeger}}, \bibinfo {author} {\bibfnamefont {M.}~\bibnamefont {Mendoza}}, \
and\ \bibinfo {author} {\bibfnamefont {H.~J.}\ \bibnamefont {Herrmann}},\
}\href@noop {} {\bibfield {journal} {\bibinfo {journal} {Physical Review
Letters}\ }\textbf {\bibinfo {volume} {119}},\ \bibinfo {pages} {124501}
(\bibinfo {year} {2017})}\BibitemShut {NoStop}%
\bibitem [{\citenamefont {Kramer}\ and\ \citenamefont
{MacKinnon}(1993)}]{kramer1993localization}%
\BibitemOpen
\bibfield {author} {\bibinfo {author} {\bibfnamefont {B.}~\bibnamefont
{Kramer}}\ and\ \bibinfo {author} {\bibfnamefont {A.}~\bibnamefont
{MacKinnon}},\ }\href@noop {} {\bibfield {journal} {\bibinfo {journal}
{Reports on Progress in Physics}\ }\textbf {\bibinfo {volume} {56}},\
\bibinfo {pages} {1469} (\bibinfo {year} {1993})}\BibitemShut {NoStop}%
\end{thebibliography}%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\appendix
\end{document}