-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
384 lines (314 loc) · 14 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
# The main code
import cv2
import numpy
import math
import os
from keras.preprocessing.image import img_to_array, load_img
from keras.optimizers import SGD
from keras.models import Sequential
from keras.layers.core import Dense, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from PIL import Image
import keras
# path to the dataset
paths = ['/home/snrao/IDE/PycharmProjects/ASL Finger Spelling Recognition/asl_dataset']
TOTAL_DATASET = 2515
x_train = [] # training lists
y_train = []
nb_classes = 36 # number of classes
img_rows, img_cols = 400, 400 # size of training images
img_channels = 3 # BGR channels
batch_size = 32
nb_epoch = 100 # iterations for training
data_augmentation = True
# dictionary for classes from char to numbers
classes = {
'0': 0,
'1': 1,
'2': 2,
'3': 3,
'4': 4,
'5': 5,
'6': 6,
'7': 7,
'8': 8,
'9': 9,
'a': 10,
'b': 11,
'c': 12,
'd': 13,
'e': 14,
'f': 15,
'g': 16,
'h': 17,
'i': 18,
'j': 19,
'k': 20,
'l': 21,
'm': 22,
'n': 23,
'o': 24,
'p': 25,
'q': 26,
'r': 27,
's': 28,
't': 29,
'u': 30,
'v': 31,
'w': 32,
'x': 33,
'y': 34,
'z': 35,
}
# load the dataset and populate xtrain and ytrain
def load_data_set():
for path in paths:
for root, directories, filenames in os.walk(path):
for filename in filenames:
if filename.endswith(".jpeg"):
fullpath = os.path.join(root, filename)
img = load_img(fullpath)
img = img_to_array(img)
x_train.append(img)
t = fullpath.rindex('/')
fullpath = fullpath[0:t]
n = fullpath.rindex('/')
y_train.append(classes[fullpath[n + 1:t]])
# create a model for training and return the model
def make_network(x_train):
model = Sequential()
model.add(Convolution2D(32, 3, 3, border_mode='same',
input_shape=x_train.shape[1:]))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Convolution2D(64, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
return model
# traiing model which was created
def train_model(model, X_train, Y_train):
# let's train the model using SGD + momentum (how original).
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
model.fit(X_train, Y_train,
batch_size=batch_size,
nb_epoch=nb_epoch)
# loads data set, converts the triaining arrays into required formats of numpy arrays and calls make_network to
# create a model and then calls train_model to train it and then saves the model in disk. OR just loads the model
# from disk.
def trainData():
load_data_set()
a = numpy.asarray(y_train)
y_train_new = a.reshape(a.shape[0], 1)
X_train = numpy.asarray(x_train).astype('float32')
X_train = X_train / 255.0
Y_train = np_utils.to_categorical(y_train_new, nb_classes)
# run this if model is not saved.
model = make_network(numpy.asarray(x_train))
train_model(model,X_train,Y_train)
model.save('/home/snrao/IDE/PycharmProjects/ASL Finger Spelling Recognition/keras.model')
# run this if model is already saved on disk.
# model = keras.models.load_model('/home/snrao/IDE/PycharmProjects/ASL Finger Spelling Recognition/keras.model')
return model
model = trainData()
# called from main, when gesture is recognized. The gesture image is cropped and sent to this function.
def identifyGesture(handTrainImage):
# saving the sent image for checking
# cv2.imwrite("/home/snrao/IDE/PycharmProjects/ASL Finger Spelling Recognition/a0.jpeg", handTrainImage)
# converting the image to same resolution as training data by padding to reach 1:1 aspect ration and then
# resizing to 400 x 400. Same is done with training data in preprocess_image.py. Opencv image is first
# converted to Pillow image to do this.
handTrainImage = cv2.cvtColor(handTrainImage, cv2.COLOR_BGR2RGB)
img = Image.fromarray(handTrainImage)
img_w, img_h = img.size
M = max(img_w, img_h)
background = Image.new('RGB', (M, M), (0, 0, 0))
bg_w, bg_h = background.size
offset = ((bg_w - img_w) / 2, (bg_h - img_h) / 2)
background.paste(img, offset)
size = 400,400
background = background.resize(size, Image.ANTIALIAS)
# saving the processed image for checking.
# background.save("/home/snrao/IDE/PycharmProjects/ASL Finger Spelling Recognition/a.jpeg")
# get image as numpy array and predict using model
open_cv_image = numpy.array(background)
background = open_cv_image.astype('float32')
background = background / 255
background = background.reshape((1,) + background.shape)
predictions = model.predict_classes(background)
# print predicted class and get the class name (character name) for the given class number and return it
print predictions
key = (key for key, value in classes.items() if value == predictions[0]).next()
return key
def nothing(x):
pass
# Create a window to display the camera feed
cv2.namedWindow('Camera Output')
cv2.namedWindow('Hand')
cv2.namedWindow('HandTrain')
# TrackBars for fixing skin color of the person
cv2.createTrackbar('B for min', 'Camera Output', 0, 255, nothing)
cv2.createTrackbar('G for min', 'Camera Output', 0, 255, nothing)
cv2.createTrackbar('R for min', 'Camera Output', 0, 255, nothing)
cv2.createTrackbar('B for max', 'Camera Output', 0, 255, nothing)
cv2.createTrackbar('G for max', 'Camera Output', 0, 255, nothing)
cv2.createTrackbar('R for max', 'Camera Output', 0, 255, nothing)
# Default skin color values in natural lighting
# cv2.setTrackbarPos('B for min','Camera Output',52)
# cv2.setTrackbarPos('G for min','Camera Output',128)
# cv2.setTrackbarPos('R for min','Camera Output',0)
# cv2.setTrackbarPos('B for max','Camera Output',255)
# cv2.setTrackbarPos('G for max','Camera Output',140)
# cv2.setTrackbarPos('R for max','Camera Output',146)
# Default skin color values in indoor lighting
cv2.setTrackbarPos('B for min', 'Camera Output', 0)
cv2.setTrackbarPos('G for min', 'Camera Output', 130)
cv2.setTrackbarPos('R for min', 'Camera Output', 103)
cv2.setTrackbarPos('B for max', 'Camera Output', 255)
cv2.setTrackbarPos('G for max', 'Camera Output', 182)
cv2.setTrackbarPos('R for max', 'Camera Output', 130)
# Get pointer to video frames from primary device
videoFrame = cv2.VideoCapture(0)
# Process the video frames
keyPressed = -1 # -1 indicates no key pressed. Can press any key to exit
# cascade xml file for detecting palm. Haar classifier
palm_cascade = cv2.CascadeClassifier('palm.xml')
# previous values of cropped variable
x_crop_prev, y_crop_prev, w_crop_prev, h_crop_prev = 0, 0, 0, 0
# previous cropped frame if we need to compare histograms of previous image with this to see the change.
# Not used but may need later.
_, prevHandImage = videoFrame.read()
# previous frame contour of hand. Used to compare with new contour to find if gesture has changed.
prevcnt = numpy.array([], dtype=numpy.int32)
# gesture static increments when gesture doesn't change till it reaches 10 (frames) and then resets to 0.
# gesture detected is set to 10 when gesture static reaches 10."Gesture Detected is displayed for next
# 10 frames till gestureDetected decrements to 0.
gestureStatic = 0
gestureDetected = 0
while keyPressed < 0: # any key pressed has a value >= 0
# Getting min and max colors for skin
min_YCrCb = numpy.array([cv2.getTrackbarPos('B for min', 'Camera Output'),
cv2.getTrackbarPos('G for min', 'Camera Output'),
cv2.getTrackbarPos('R for min', 'Camera Output')], numpy.uint8)
max_YCrCb = numpy.array([cv2.getTrackbarPos('B for max', 'Camera Output'),
cv2.getTrackbarPos('G for max', 'Camera Output'),
cv2.getTrackbarPos('R for max', 'Camera Output')], numpy.uint8)
# Grab video frame, Decode it and return next video frame
readSucsess, sourceImage = videoFrame.read()
# Convert image to YCrCb
imageYCrCb = cv2.cvtColor(sourceImage, cv2.COLOR_BGR2YCR_CB)
imageYCrCb = cv2.GaussianBlur(imageYCrCb, (5, 5), 0)
# Find region with skin tone in YCrCb image
skinRegion = cv2.inRange(imageYCrCb, min_YCrCb, max_YCrCb)
# Do contour detection on skin region
_, contours, hierarchy = cv2.findContours(skinRegion, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# sorting contours by area. Largest area first.
contours = sorted(contours, key=cv2.contourArea, reverse=True)
# get largest contour and compare with largest contour from previous frame.
# set previous contour to this one after comparison.
cnt = contours[0]
ret = cv2.matchShapes(cnt, prevcnt, 2, 0.0)
prevcnt = contours[0]
# once we get contour, extract it without background into a new window called handTrainImage
stencil = numpy.zeros(sourceImage.shape).astype(sourceImage.dtype)
color = [255, 255, 255]
cv2.fillPoly(stencil, [cnt], color)
handTrainImage = cv2.bitwise_and(sourceImage, stencil)
# if comparison returns a high value (shapes are different), start gestureStatic over. Else increment it.
if (ret > 0.70):
gestureStatic = 0
else:
gestureStatic += 1
# crop coordinates for hand.
x_crop, y_crop, w_crop, h_crop = cv2.boundingRect(cnt)
# place a rectange around the hand.
cv2.rectangle(sourceImage, (x_crop, y_crop), (x_crop + w_crop, y_crop + h_crop), (0, 255, 0), 2)
# if the crop area has changed drastically form previous frame, update it.
if (abs(x_crop - x_crop_prev) > 50 or abs(y_crop - y_crop_prev) > 50 or
abs(w_crop - w_crop_prev) > 50 or abs(h_crop - h_crop_prev) > 50):
x_crop_prev = x_crop
y_crop_prev = y_crop
h_crop_prev = h_crop
w_crop_prev = w_crop
# create crop image
handImage = sourceImage.copy()[max(0, y_crop_prev - 50):y_crop_prev + h_crop_prev + 50,
max(0, x_crop_prev - 50):x_crop_prev + w_crop_prev + 50]
# Training image with black background
handTrainImage = handTrainImage[max(0, y_crop_prev - 15):y_crop_prev + h_crop_prev + 15,
max(0, x_crop_prev - 15):x_crop_prev + w_crop_prev + 15]
# if gesture is static for 10 frames, set gestureDetected to 10 and display "gesture detected"
# on screen for 10 frames.
if gestureStatic == 10:
gestureDetected = 10;
print("Gesture Detected")
letterDetected = identifyGesture(handTrainImage) # todo: Ashish fill this function to return actual character
if gestureDetected > 0:
if (letterDetected != None):
cv2.putText(sourceImage, letterDetected, (10, 400), cv2.FONT_HERSHEY_SIMPLEX, 3, (0, 0, 255), 2)
gestureDetected -= 1
# Comparing histograms of this image and previous image to check if the gesture has changed.
# Not accurate. So switched to contour comparisons.
# hist1 = cv2.calcHist(handImage, [0, 1, 2], None, [8, 8, 8],
# [0, 256, 0, 256, 0, 256])
# hist1 = cv2.normalize(hist1,hist1).flatten()
# hist2 = cv2.calcHist(prevHandImage, [0, 1, 2], None, [8, 8, 8],
# [0, 256, 0, 256, 0, 256])
# hist2 = cv2.normalize(hist2,hist2).flatten()
# d = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CHISQR)
# # if d<0.9:
# print(d)
# prevHandImage = handImage
# haar cascade classifier to detect palm and gestures. Not very accurate though.
# Needs more training to become accurate.
gray = cv2.cvtColor(handImage, cv2.COLOR_BGR2HSV)
palm = palm_cascade.detectMultiScale(gray)
for (x, y, w, h) in palm:
cv2.rectangle(sourceImage, (x, y), (x + w, y + h), (255, 0, 0), 2)
# roi_gray = gray[y:y + h, x:x + w]
roi_color = sourceImage[y:y + h, x:x + w]
# to show convex hull in the image
hull = cv2.convexHull(cnt, returnPoints=False)
defects = cv2.convexityDefects(cnt, hull)
# counting defects in convex hull. To find center of palm. Center is average of defect points.
count_defects = 0
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(cnt[s][0])
end = tuple(cnt[e][0])
far = tuple(cnt[f][0])
if count_defects == 0:
center_of_palm = far
a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) * 57
if angle <= 90:
count_defects += 1
if count_defects < 5:
# cv2.circle(sourceImage, far, 5, [0, 0, 255], -1)
center_of_palm = (far[0] + center_of_palm[0]) / 2, (far[1] + center_of_palm[1]) / 2
cv2.line(sourceImage, start, end, [0, 255, 0], 2)
# cv2.circle(sourceImage, avr, 10, [255, 255, 255], -1)
# drawing the largest contour
cv2.drawContours(sourceImage, contours, 0, (0, 255, 0), 1)
# Display the source image and cropped image
cv2.imshow('Camera Output', sourceImage)
cv2.imshow('Hand', handImage)
cv2.imshow('HandTrain', handTrainImage)
# Check for user input to close program
keyPressed = cv2.waitKey(30) # wait 30 miliseconds in each iteration of while loop
# Close window and camera after exiting the while loop
cv2.destroyWindow('Camera Output')
videoFrame.release()