-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbbdep_threadpool2.cpp
799 lines (669 loc) · 29.1 KB
/
bbdep_threadpool2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
/*BEGIN_LEGAL
Intel Open Source License
Copyright (c) 2002-2012 Intel Corporation. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer. Redistributions
in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution. Neither the name of
the Intel Corporation nor the names of its contributors may be used to
endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE INTEL OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
END_LEGAL */
/*
* Basic block buffering tool using Pin Fast buffering API, with internal-tool threads that processes
* the buffers.
*
* Similar to membuffer_simple, a memory trace (Ip of memory accessing instruction and address
* of memory access - see struct MEMREF) is collected by inserting Pin buffering API.
* This tool uses multiple buffers and internal-tool threads to enable the application code to continue
* to run (and fill buffers), while full buffers are being processed by the internal-tool threads.
* It is similar to memtrace_threadpool in this sense - but the multiple buffers that are available for filling
* are kept on the free buffers list of the application thread that used the PIN_AllocateBuffer to allocate
* them.
*
* Each application thread allocates the specified number of buffers (see PIN_AllocateBuffer).
* The Pin buffering API requires that each application thread can only use the buffers it
* allocated as buffers to be filled by Pin, but any internal-tool thread can process any buffer.
* So the internal-processing threads can be used as a thread-pool.
* This leads to the following model:
* Buffers that are available to be used by the application thread to be filled by Pin are kept on
* a free buffers list associated with the application thread.
* When a buffer becomes full, Pin calls the BufferFull callback function. The BufferFull function uses
* it's thread id parameter to identify which application thread this buffer belongs to, and then
* calls that threads EnqueFullAndGetNextToFill function.
* The EnqueFullAndGetNextToFill function puts the buffer, along with the identifier of which app-thread
* it belongs to on a global full buffers list, and then signals that a(nother) full buffer is on the
* list. After this the EnqueFullAndGetNextToFill function waits on the free buffers list it's application
* thread, when this free list is signaled, the EnqueFullAndGetNextToFill takes a buffer from there
* and returns it to the BufferFull function, which returns it to Pin as the next buffer to fill.
* The internal-tool threads all wait on the full buffers list. When that list is signaled, one of them
* wakes up, takes a buffer from the list, processes it, and then puts it on the free buffers list
* of the application thread that owns the buffer.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <stddef.h>
#include <set>
#include <list>
#include <sstream>
#include "pin.H"
#include "portability.H"
#include "InstLib/instlib.H"
#include "InstLib/branch_pred.h"
using namespace INSTLIB;
/*
* Knobs for tool
*/
KNOB<string> KnobOutputFile(KNOB_MODE_WRITEONCE, "pintool", "o", "bbrep_pool.out", "output file");
KNOB<BOOL> KnobProcessBuffer(KNOB_MODE_WRITEONCE, "pintool", "process_buffs", "1", "process the filled buffers");
KNOB<UINT32> KnobNumProcessingThreads(KNOB_MODE_OVERWRITE, "pintool", "num_processing_threads", "1", "number of processing threads");
KNOB<UINT32> KnobNumPagesInBuffer(KNOB_MODE_WRITEONCE, "pintool", "num_pages_in_buffer", "16384", "number of pages in buffer"); //64m
KNOB<UINT32> KnobNumBuffersPerAppThread(KNOB_MODE_WRITEONCE, "pintool", "num_buffers_per_app_thread", "1", "number of buffers per thread");
KNOB<BOOL> KnobStatistics(KNOB_MODE_WRITEONCE, "pintool", "statistics", "0", "gather statistics");
KNOB<BOOL> KnobLiteStatistics(KNOB_MODE_WRITEONCE, "pintool", "lite_statistics", "0", "gather lite statistics");
KNOB<string> KnobStatisticsOutputFile(KNOB_MODE_WRITEONCE, "pintool", "stat_file", "stats.out", "output file");
KNOB<UINT32> KnobNumBBsInTrace(KNOB_MODE_WRITEONCE, "pintool", "num_bbs_in_trace", "8", "limit of BBs per trace");
extern "C" UINT64 ReadProcessorCycleCounter();
FILTER filter;
UINT16 prev_H_tag =-1;
struct TRACEREF
{
UINT16 tag;
};
// The buffer ID returned by the one call to PIN_DefineTraceBuffer
BUFFER_ID bufId;
// the Pin TLS slot that an application-thread will use to hold the APP_THREAD_REPRESENTITVE
// object that it owns
TLS_KEY appThreadRepresentitiveKey;
// Set of UIDs of all internal-tool threads
// We use std::set to verify that each thread has a unique UID
set<PIN_THREAD_UID> uidSet;
BOOL doExit = FALSE; // process is terminating
BOOL processingThreadRunning = FALSE; // is any processing thread running
#include "threadpool_statistics.h"
class BUFFER_LIST_MANAGER;
class PROCESSING_THREAD_REPRESENTITVE;
/*
* APP_THREAD_REPRESENTITVE
* Each application thread, creates an object of this class and saves it in it's Pin TLS
* slot (appThreadRepresentitiveKey).
* This object is used when the BufferFull function is called. It provides the functionality
* of:
* 1) Managing the buffers allocated (by Pin) by this thread. It uses it's BUFFER_LIST_MANAGER
* _freeBufferListManager to do this.
* 2) Enquening a full buffer on the global full buffers list (fullBuffersListManager) so it
* will be processed by one of the internal-tool buffer processing threads.
* 3) If there is no internal-tool buffer processing thread running yet
* then the ProcessBuffer is used to process the buffer by the application
* thread. It cannot wait for processing thread to start running
* because this may cause deadlock - because this app thread may be holding some OS
* resource that the processing thread needs in order to start running - e.g. the LoaderLock
*/
class APP_THREAD_REPRESENTITVE
{
public:
APP_THREAD_REPRESENTITVE(THREADID tid);
~APP_THREAD_REPRESENTITVE(){};
// Called from the BufferFull callback
VOID * EnqueFullAndGetNextToFill(VOID *buf, UINT64 numElements);
// Called from the ThreadFini callback, to know when all the buffers of this app thread
// have been processed
BOOL AllBuffersProcessed();
APP_THREAD_STATISTICS * Statistics() { return (&_appThreadStatistics);}
BUFFER_LIST_MANAGER *FreeBufferListManager() { return _freeBufferListManager;}
THREADID GetAppThreadId() {return (_myTid);}
private:
// the buffers of this thread are placed on this list when they are available for filling
BUFFER_LIST_MANAGER *_freeBufferListManager;
THREADID _myTid;
BOOL _buffersAllocated;
APP_THREAD_STATISTICS _appThreadStatistics;
};
/*
* BUFFER_LIST_MANAGER
* This class implements buffer list management, both for the global fullBuffers list
* and for the per-app-thread bufferBuffersList
*/
class BUFFER_LIST_MANAGER
{
public:
BUFFER_LIST_MANAGER();
VOID PutBufferOnList(VOID *buf, UINT64 numElements,
/* the thread that owns the buffer */
APP_THREAD_REPRESENTITVE *appThreadRepresentitive,
/* thread Id of the thread making the call */
THREADID tid);
VOID GetBufferFromList(VOID **buf ,UINT64 *numElements,
/* the thread that owns the buffer */
APP_THREAD_REPRESENTITVE **appThreadRepresentitive,
/* thread Id of the thread making the call */
THREADID tid);
VOID SignalBufferSem();
UINT32 NumBuffersOnList () { return (_bufferList.size());}
BUFFER_LIST_STATISTICS *Statistics() {return &_bufferListStatistics;}
private:
// structure of an element of the buffer list
struct BUFFER_LIST_ELEMENT
{
VOID *buf;
UINT64 numElements;
// the application thread that owns this buffer
APP_THREAD_REPRESENTITVE *appThreadRepresentitive;
};
// WIND::HANDLE _bufferSem;
int csem; // counting semaphore
PIN_SEMAPHORE mutex; //provides normal mutual exclusion on the shared variable csem
PIN_SEMAPHORE delay; //acts as a delay semaphore.
PIN_LOCK _bufferListLock;
list<BUFFER_LIST_ELEMENT> _bufferList;
BUFFER_LIST_STATISTICS _bufferListStatistics;
};
// all full buffers are placed on this list by the app threads.
// the internal-tool threads pick them up from here,
// process them, and put them on the owning app thread's
// free list
BUFFER_LIST_MANAGER fullBuffersListManager;
VOID ProcessBuffer(VOID *buf, UINT64 numElements, APP_THREAD_REPRESENTITVE * associatedAppThread)
{
if (!KnobProcessBuffer )
{
return;
}
if (KnobStatistics)
{
associatedAppThread->Statistics()->StartCyclesProcessingBuffer();
}
stringstream ss;
string temp_string;
ss<<associatedAppThread->Statistics()->NumBuffersFilled();
ss>> temp_string;
// printf ("Processing Buffer1!\n");
string filename = KnobOutputFile.Value() + "." + decstr(getpid_portable()) + "." + decstr(associatedAppThread->GetAppThreadId())+ "_"+temp_string;
ofstream _ofile;
_ofile.open(filename.c_str());
// printf ("Processing Buffer2!\n");
if ( ! _ofile )
{
cerr << "Error: could not open output file." << endl;
exit(1);
}
_ofile << hex;
// printf ("Processing Buffer3!\n");
struct TRACEREF * reference=(struct TRACEREF*)buf;
UINT64 until = numElements;
for(UINT64 i=0; i<until; i++, reference++)
{
// firstMemref->pc += memref->pc + memref->ea;
_ofile << reference->tag;
}
_ofile.close();
associatedAppThread->Statistics()->AddNumElementsProcessed((UINT32)until);
if (KnobStatistics)
{
associatedAppThread->Statistics()->UpdateCyclesProcessingBuffer();
}
}
/*********** APP_THREAD_REPRESENTITVE implementation *******/
APP_THREAD_REPRESENTITVE::APP_THREAD_REPRESENTITVE(THREADID tid) :
_myTid(tid),
_buffersAllocated(FALSE)
{
// printf ("Application thread Id %d: new free buffer list\n", tid);
// fflush (stdout);
_freeBufferListManager = new (BUFFER_LIST_MANAGER);
}
VOID * APP_THREAD_REPRESENTITVE::EnqueFullAndGetNextToFill(VOID *fullBuf, UINT64 numElements)
{
_appThreadStatistics.IncrementNumBuffersFilled();
// under some conditions the buffer is processed in this app thread
if ( !processingThreadRunning // cannot wait for processing thread to start running
// this may cause deadlock - because this app thread
// may be holding some OS resource that the processing
// needs to obtain in order to start - e.g. the LoaderLock
// heuristic - no available free buffer, so process by this app thread
/*|| (processingThreadRunning
&& _bufferListManager->NumBuffersOnList()==0)*/
)
{ // process buffer in this app thread
_appThreadStatistics.IncrementNumBuffersProcessedInAppThread();
ProcessBuffer(fullBuf, numElements, this);
return fullBuf;
}
if (!_buffersAllocated)
{
// now allocate the rest of the KnobNumBuffersPerAppThread buffers to be used
// only one buffer definition is used - it is identified by bufId
// that was returned by the one call to PIN_DefineTraceBuffer
printf ("EnqueFullAndGetNextToFill(): Allocating buffers for this thread\n");
fflush (stdout);
for (unsigned int i=0; i<KnobNumBuffersPerAppThread-1; i++)
{
//printf (" Allocated buffer\n");
_freeBufferListManager->PutBufferOnList(PIN_AllocateBuffer(bufId), 0, this, _myTid);
}
_buffersAllocated = TRUE;
//printf (" Allocated buffers\n");
//fflush (stdout);
}
// put the fullBuf on the full buffers list, one the internal-tool processing
// threads will pick it from there, process it, and then put it on this app-thread's
// free buffer list
printf ("EnqueFullAndGetNextToFill():Putting a buffer into fullBuffrList\n");
fflush (stdout);
fullBuffersListManager.PutBufferOnList(fullBuf, numElements, this, _myTid);
// provide Pin with the next buffer to fill.
// It is always taken from the free buffers list of this app thread.
// If the list is empty then this app thread will be blocked until one
// is placed there (by one of the tool-internal buffer processing threads).
VOID *nextBufToFill;
UINT64 numElementsDummy;
APP_THREAD_REPRESENTITVE *appThreadRepresentitiveDummy;
printf ("EnqueFullAndGetNextToFill():getting a buffer from _freeBufferListManager\n");
fflush (stdout);
// PIN_Sleep(5);
_freeBufferListManager->GetBufferFromList(&nextBufToFill,
&numElementsDummy,
&appThreadRepresentitiveDummy,
_myTid);
ASSERTX(appThreadRepresentitiveDummy = this);
return nextBufToFill;
}
BOOL APP_THREAD_REPRESENTITVE::AllBuffersProcessed()
{
// Note that Pin calls the BufferFull callback when the thread is terminating
// and the BufferFull function takes a buffer from the free list and returns it to
// Pin, so that buffer will NOT be on the free list when the thread ends, hence the
// -1 below
return (_freeBufferListManager->NumBuffersOnList() == KnobNumBuffersPerAppThread-1);
}
/*********** BUFFER_LIST_MANAGER implementation *******/
BUFFER_LIST_MANAGER::BUFFER_LIST_MANAGER():csem(0)
{
// _bufferSem = WIND::CreateSemaphore (NULL, 0, 0x7fffffff, NULL);
InitLock(&_bufferListLock); //add by Jiang Ming, pin-2.12 version no Initialize the lock as free
PIN_SemaphoreInit(&mutex);
PIN_SemaphoreInit(&delay);
PIN_SemaphoreSet(&mutex); //semaphore, initial value 1
ASSERTX(PIN_SemaphoreIsSet(&mutex));
PIN_SemaphoreClear(&delay); //semaphore, initial value 0
ASSERTX(!PIN_SemaphoreIsSet(&delay));
// printf ("BUFFER_LIST_MANAGER(), csem initializion: %d\n", csem);
// fflush (stdout);
}
VOID BUFFER_LIST_MANAGER::PutBufferOnList(VOID *buf, UINT64 numElements,
/* the thread that owns the buffer */
APP_THREAD_REPRESENTITVE *appThreadRepresentitive,
/* thread Id of the thread making the call */
THREADID tid)
{
BUFFER_LIST_ELEMENT bufferListElement;
bufferListElement.buf = buf;
bufferListElement.numElements = numElements;
bufferListElement.appThreadRepresentitive = appThreadRepresentitive;
GetLock(&_bufferListLock, tid+1);
_bufferList.push_back(bufferListElement);
ReleaseLock(&_bufferListLock);
//BOOL success = WIND::ReleaseSemaphore(_bufferSem, 1, NULL);
//begin V(CSEM):
PIN_SemaphoreWait(&mutex);
csem = csem + 1;
// printf ("PutBufferOnList(), csem ++: %d\n", csem);
// fflush (stdout);
if (csem <= 0)
{
PIN_SemaphoreSet(&delay);
// printf ("set semaphore dealy\n");
// fflush (stdout);
}
else
PIN_SemaphoreSet(&mutex);
//end V(CSEM)
}
VOID BUFFER_LIST_MANAGER::GetBufferFromList(VOID **buf, UINT64 *numElements,
/* the thread that owns the buffer */
APP_THREAD_REPRESENTITVE **appThreadRepresentitive,
/* thread Id of the thread making the call */
THREADID tid)
{
if (KnobStatistics)
{
if (_bufferList.empty())
{
_bufferListStatistics.IncrementNumTimesWaited();
}
_bufferListStatistics.StartCyclesWaitingForBuffer();
}
// WIND::WaitForSingleObject (_bufferSem, INFINITE);
//beging P(CSEM):
PIN_SemaphoreWait(&mutex);
csem = csem - 1;
// printf ("GetBufferFromList(), csem --: %d\n", csem);
// fflush (stdout);
if (csem <0) {
PIN_SemaphoreSet(&mutex);
PIN_SemaphoreWait(&delay);
}
PIN_SemaphoreSet(&mutex);
//end P(CSEM)
if (KnobStatistics )
{
_bufferListStatistics.UpdateCyclesWaitingForBuffer();
}
GetLock(&_bufferListLock, tid+1);
BUFFER_LIST_ELEMENT &bufferListElement = (_bufferList.front());
*buf = bufferListElement.buf;
*numElements = bufferListElement.numElements;
*appThreadRepresentitive = bufferListElement.appThreadRepresentitive;
_bufferList.pop_front();
ReleaseLock(&_bufferListLock);
}
VOID BUFFER_LIST_MANAGER::SignalBufferSem()
{
// BOOL success = WIND::ReleaseSemaphore(_bufferSem, 1, NULL);
/*
PIN_SemaphoreWait(&mutex);
csem = csem + 1;
if (csem < 0) PIN_SemaphoreSet(&delay);
PIN_SemaphoreSet(&mutex);
*/
//begin V(CSEM):
PIN_SemaphoreWait(&mutex);
csem = csem + 1;
if (csem <= 0)
{
PIN_SemaphoreSet(&delay);
}
else
PIN_SemaphoreSet(&mutex);
//end V(CSEM)
}
/*********** BUFFER_LIST_MANAGER implementation END *******/
// Trivial analysis routine to pass its argument back in an IfCall so that we can use it
// to control the next piece of instrumentation.
static ADDRINT returnArg (BOOL arg)
{
return arg;
}
/*
* Trace instrumentation routine invoked by Pin when jitting a trace
* Insert code to write data to a thread-specific buffer for instructions
* that access memory.
*/
VOID Trace(TRACE trace, VOID *v)
{
if (!filter.SelectTrace(trace))
return;
UINT16 current_H_tag;
UINT16 current_L_tag;
for(BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); bbl=BBL_Next(bbl))
{
INS ins_tail = BBL_InsTail(bbl); //Last instruction of bbl
if (INS_IsDirectBranch(ins_tail) && INS_Category(ins_tail) != XED_CATEGORY_COND_BR) //direct jumps
continue;
current_H_tag = BBL_Address(bbl)>>16;
current_L_tag = BBL_Address(bbl) & 0x0000ffff;
INS ins = BBL_InsHead(bbl);
//if(INS_Valid(ins))
if (prev_H_tag != current_H_tag)
{
prev_H_tag =current_H_tag;
INS_InsertFillBuffer(ins, IPOINT_BEFORE, bufId, IARG_ADDRINT, 0x0000, offsetof(struct TRACEREF, tag), IARG_END);
INS_InsertFillBuffer(ins, IPOINT_BEFORE, bufId, IARG_ADDRINT, current_H_tag, offsetof(struct TRACEREF, tag), IARG_END);
}
if (current_L_tag ==0x0000)
{
INS_InsertFillBuffer(ins, IPOINT_BEFORE, bufId, IARG_ADDRINT, 0x0000, offsetof(struct TRACEREF, tag), IARG_END);
INS_InsertFillBuffer(ins, IPOINT_BEFORE, bufId, IARG_ADDRINT, 0x0000, offsetof(struct TRACEREF, tag), IARG_END);
}
if (current_L_tag !=0x0000)
INS_InsertFillBuffer(ins, IPOINT_BEFORE, bufId, IARG_ADDRINT, current_L_tag, offsetof(struct TRACEREF, tag), IARG_END);
// Count REP prefixed instructions and their repeat counts
if (!INS_HasRealRep(ins_tail))
continue;
INS_InsertIfCall(ins_tail, IPOINT_BEFORE, (AFUNPTR)returnArg, IARG_FIRST_REP_ITERATION, IARG_END);
INS_InsertFillBufferThen(ins_tail, IPOINT_BEFORE, bufId, IARG_REG_VALUE, INS_RepCountRegister(ins_tail), offsetof(struct TRACEREF, tag), IARG_END);
}
}
/**************************************************************************
*
* Callback Routines
*
**************************************************************************/
/*!
* Called when a buffer fills up, or the thread exits, so the buffer can be processed
* Called in the context of the application thread
* @param[in] id buffer handle
* @param[in] tid id of owning thread
* @param[in] ctxt application context
* @param[in] buf actual pointer to buffer
* @param[in] numElements number of records
* @param[in] v callback value
* @return A pointer to the buffer to resume filling.
*/
VOID * BufferFull(BUFFER_ID id, THREADID tid, const CONTEXT *ctxt, VOID *buf,
UINT64 numElements, VOID *v)
{
// struct MEMREF * reference=(struct MEMREF*)buf;
APP_THREAD_REPRESENTITVE * appThreadRepresentitive
= static_cast<APP_THREAD_REPRESENTITVE*>( PIN_GetThreadData( appThreadRepresentitiveKey, tid ) );
printf ("AppThread tid %d GotBuffer %p\n", tid, buf);
fflush (stdout);
VOID *nextBuffToFill
= appThreadRepresentitive->EnqueFullAndGetNextToFill(buf, numElements);
printf ("AppThread tid %d NextToFill %p\n", tid, nextBuffToFill);
fflush (stdout);
return (nextBuffToFill);
}
VOID ThreadStart(THREADID tid, CONTEXT *ctxt, INT32 flags, VOID *v)
{
// There is a new APP_THREAD_REPRESENTITVE for every thread.
APP_THREAD_REPRESENTITVE * appThreadRepresentitive
= new APP_THREAD_REPRESENTITVE(tid);
// A thread will need to look up its APP_THREAD_REPRESENTITVE, so save pointer in TLS
PIN_SetThreadData(appThreadRepresentitiveKey, appThreadRepresentitive, tid);
}
VOID ThreadFini(THREADID tid, const CONTEXT *ctxt, INT32 code, VOID *v)
{
printf ("ThreadFini..\n");
fflush (stdout);
APP_THREAD_REPRESENTITVE * appThreadRepresentitive
= static_cast<APP_THREAD_REPRESENTITVE*>(PIN_GetThreadData(appThreadRepresentitiveKey, tid));
// wait for all my buffers to be processed
while(!appThreadRepresentitive->AllBuffersProcessed())
{
PIN_Sleep(10);
}
appThreadRepresentitive->Statistics()->DumpNumBuffersFilled();
appThreadRepresentitive->Statistics()->IncorporateBufferStatistics(appThreadRepresentitive->FreeBufferListManager()->Statistics());
overallStatistics.AccumulateAppThreadStatistics(appThreadRepresentitive->Statistics(), TRUE);
if (KnobStatistics)
{
appThreadRepresentitive->Statistics()->Dump();
}
delete appThreadRepresentitive;
PIN_SetThreadData(appThreadRepresentitiveKey, 0, tid);
}
/*!
* Process exit callback (unlocked).
*/
static VOID FiniUnlocked(INT32 code, VOID *v)
{
BOOL waitStatus;
INT32 threadExitCode;
printf ("FiniUnlocked..\n");
fflush (stdout);
doExit = TRUE;
// signal all the internal threads to wake up and recognize the exit
for (unsigned int i=0; i<KnobNumProcessingThreads; i++)
{
fullBuffersListManager.SignalBufferSem();
}
// Wait until all internal threads exit
for (set<PIN_THREAD_UID>::iterator it = uidSet.begin(); it != uidSet.end(); ++it)
{
waitStatus = PIN_WaitForThreadTermination(*it, PIN_INFINITE_TIMEOUT, &threadExitCode);
if (!waitStatus)
{
fprintf (stderr, "PIN_WaitForThreadTermination(secondary thread) failed");
}
}
}
VOID Fini(INT32 code, VOID *v)
{
printf ("Fini..\n");
fflush (stdout);
overallStatistics.DumpNumBuffersFilled();
overallStatistics.IncorporateBufferStatistics(fullBuffersListManager.Statistics(), TRUE);
if (KnobStatistics)
{
overallStatistics.Dump();
}
}
/*!
* Record the thread's uid
*/
static void RecordToolThreadCreated(PIN_THREAD_UID threadUid)
{
BOOL insertStatus;
insertStatus = (uidSet.insert(threadUid)).second;
if (!insertStatus)
{
fprintf (stderr, "UID is not unique");
exit (-1);
}
}
/*
Buffer Processing Thread's routine
*/
static VOID BufferProcessingThread(VOID * arg)
{
processingThreadRunning = TRUE;
THREADID myThreadId = PIN_ThreadId();
while (!doExit)
{
VOID *buf;
UINT64 numElements;
APP_THREAD_REPRESENTITVE *appThreadRepresentitive;
printf ("BufferProcessingThread tid %d GetBufferFromList\n", myThreadId);
fflush (stdout);
fullBuffersListManager.GetBufferFromList(&buf ,&numElements,
&appThreadRepresentitive, myThreadId);
if (buf == NULL)
{
printf ("BufferProcessingThread tid %d is exiting\n", myThreadId);
ASSERTX(doExit);
break;
}
printf ("BufferProcessingThread tid %d ProcessBuffer %p\n", myThreadId, buf);
fflush (stdout);
ProcessBuffer(buf, numElements, appThreadRepresentitive);
printf ("BufferProcessingThread tid %d return buffer %p to appThreadRepresentitive %p\n", myThreadId, buf, appThreadRepresentitive);
fflush (stdout);
appThreadRepresentitive->FreeBufferListManager()
->PutBufferOnList(buf, 0, appThreadRepresentitive, myThreadId);
printf ("BufferProcessingThread tid %d appThreadRepresentitive %p now has %d buffers on it free list\n",
myThreadId, appThreadRepresentitive, appThreadRepresentitive->FreeBufferListManager()->NumBuffersOnList());
PIN_Sleep(20);
}
}
/*!
* Print out help message.
*/
INT32 Usage()
{
printf( "This tool demonstrates the advanced use of the buffering API in conjunction \nwith internal-tool threads\n");
printf ("The following command line options are available:\n");
printf ("-num_buffers_per_app_thread <num> :number of buffers to allocate per application thread, default 3\n");
printf ("-num_pages_in_buffer <num> :number of (4096byte) pages allocated in each buffer, default 64M\n");
printf ("-process_buffs <0 or 1> :specify 0 to disable processing of the buffers, default 1\n");
printf ("-num_processing_threads <num> :number of internal-tool buffer processing threads to create, default 3\n");
printf ("-lite_statistics <0 or 1> :specify 1 to enable lite statistics gathering, default 0\n");
printf ("-heavy_statistics <0 or 1> :specify 1 to enable heavy statistics gathering, default 0\n");
return -1;
}
VOID LimitTraces()
{
CODECACHE_ChangeMaxBblsPerTrace(KnobNumBBsInTrace);
}
/*!
* The main procedure of the tool.
* This function is called when the application image is loaded but not yet started.
* @param[in] argc total number of elements in the argv array
* @param[in] argv array of command line arguments,
* including pin -t <toolname> -- ...
*/
int main(int argc, char *argv[])
{
// Initialize PIN library. Print help message if -h(elp) is specified
// in the command line or the command line is invalid
if( PIN_Init(argc,argv) )
{
return Usage();
}
// Define the buffer type to be used
// The first buffer of this definition is implicitly allocated to each application thread
// by Pin when the application thread starts. The rest of the buffers are explicitly
// allocated by the application thread when it has determined that it has an associated
// internal-tool thread that has started running - see call to PIN_AllocateBuffer
bufId = PIN_DefineTraceBuffer(sizeof(struct TRACEREF), KnobNumPagesInBuffer, BufferFull, 0);
if(bufId == BUFFER_ID_INVALID)
{
return 1;
}
// Initialize Pin TLS slot used by the application threads to store and
// retrieve the APP_THREAD_REPRESENTITVE object that they own
appThreadRepresentitiveKey = PIN_CreateThreadDataKey(0);
// add an instrumentation function
TRACE_AddInstrumentFunction(Trace, 0);
// add callbacks
PIN_AddThreadStartFunction(ThreadStart, 0);
PIN_AddThreadFiniFunction(ThreadFini, 0);
PIN_AddFiniFunction(Fini, 0);
PIN_AddFiniUnlockedFunction(FiniUnlocked, 0);
/* It is safe to create internal threads in the tool's main procedure and spawn new
* internal threads from existing ones. All other places, like Pin callbacks and
* analysis routines in application threads, are not safe for creating internal threads.
*/
// Spawn the tool's internal threads.
for (unsigned int i=0; i<KnobNumProcessingThreads; i++)
{
THREADID threadId;
PIN_THREAD_UID threadUid;
threadId
= PIN_SpawnInternalThread(BufferProcessingThread,
NULL,
0,
&threadUid);
if (threadId == INVALID_THREADID)
{
fprintf (stderr, "PIN_SpawnInternalThread(BufferProcessingThread) failed");
exit (-1);
}
printf ("created internal-tool BufferProcessingThread\n");
fflush (stdout);
RecordToolThreadCreated(threadUid);
}
printf ("buffer size in bytes 0x%x\n", KnobNumPagesInBuffer*4096);
overallStatistics.Init();
fflush (stdout);
CODECACHE_AddCacheInitFunction(LimitTraces, 0);
filter.Activate();
PIN_StartProgram();
return 0;
}