-
Notifications
You must be signed in to change notification settings - Fork 1
/
eval.py
120 lines (107 loc) · 4.02 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# python imports
import argparse
import os
import glob
import time
from pprint import pprint
# torch imports
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.utils.data
# our code
from libs.core import load_config
from libs.datasets import make_dataset, make_data_loader
from libs.modeling import make_meta_arch
from libs.utils import valid_one_epoch, ANETdetection, fix_random_seed
################################################################################
def main(args):
"""0. load config"""
# sanity check
if os.path.isfile(args.config):
cfg = load_config(args.config)
else:
raise ValueError("Config file does not exist.")
assert len(cfg['val_split']) > 0, "Test set must be specified!"
if ".pth.tar" in args.ckpt:
assert os.path.isfile(args.ckpt), "CKPT file does not exist!"
ckpt_file = args.ckpt
else:
assert os.path.isdir(args.ckpt), "CKPT file folder does not exist!"
ckpt_file_list = sorted(glob.glob(os.path.join(args.ckpt, '*.pth.tar')))
ckpt_file = ckpt_file_list[-1]
if args.topk > 0:
cfg['model']['test_cfg']['max_seg_num'] = args.topk
pprint(cfg)
"""1. fix all randomness"""
# fix the random seeds (this will fix everything)
_ = fix_random_seed(0, include_cuda=True)
"""2. create dataset / dataloader"""
val_dataset = make_dataset(
cfg['dataset_name'], False, cfg['val_split'], **cfg['dataset']
)
# set bs = 1, and disable shuffle
val_loader = make_data_loader(
val_dataset, False, None, 1, cfg['loader']['num_workers']
)
"""3. create model and evaluator"""
# model
model = make_meta_arch(cfg['model_name'], **cfg['model'])
# not ideal for multi GPU training, ok for now
model = nn.DataParallel(model, device_ids=cfg['devices'])
"""4. load ckpt"""
print("=> loading checkpoint '{}'".format(ckpt_file))
# load ckpt, reset epoch / best rmse
checkpoint = torch.load(
ckpt_file,
map_location=lambda storage, loc: storage.cuda(cfg['devices'][0])
)
# load ema model instead
print("Loading from EMA model ...")
model.load_state_dict(checkpoint['state_dict_ema'])
del checkpoint
# set up evaluator
det_eval, output_file = None, None
if not args.saveonly:
val_db_vars = val_dataset.get_attributes()
det_eval = ANETdetection(
val_dataset.json_file,
val_dataset.split[0],
tiou_thresholds=val_db_vars['tiou_thresholds']
)
else:
output_file = os.path.join(os.path.split(ckpt_file)[0], 'eval_results.pkl')
"""5. Test the model"""
print("\nStart testing model {:s} ...".format(cfg['model_name']))
start = time.time()
mAP = valid_one_epoch(
val_loader,
model,
-1,
evaluator=det_eval,
output_file=output_file,
ext_score_file=cfg['test_cfg']['ext_score_file'],
tb_writer=None,
print_freq=args.print_freq
)
end = time.time()
print("All done! Total time: {:0.2f} sec".format(end - start))
return
################################################################################
if __name__ == '__main__':
"""Entry Point"""
# the arg parser
parser = argparse.ArgumentParser(
description='Train a point-based transformer for action localization')
parser.add_argument('config', type=str, metavar='DIR',
help='path to a config file')
parser.add_argument('ckpt', type=str, metavar='DIR',
help='path to a checkpoint')
parser.add_argument('-t', '--topk', default=-1, type=int,
help='max number of output actions (default: -1)')
parser.add_argument('--saveonly', action='store_true',
help='Only save the ouputs without evaluation (e.g., for test set)')
parser.add_argument('-p', '--print-freq', default=10, type=int,
help='print frequency (default: 10 iterations)')
args = parser.parse_args()
main(args)