-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathhamming_cost.cu
69 lines (57 loc) · 2.46 KB
/
hamming_cost.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/**
This file is part of sgm. (https://github.com/dhernandez0/sgm).
Copyright (c) 2016 Daniel Hernandez Juarez.
sgm is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
sgm is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with sgm. If not, see <http://www.gnu.org/licenses/>.
**/
#include "hamming_cost.h"
//d_transform0, d_transform1, d_cost, rows, cols
__global__ void
HammingDistanceCostKernel ( const cost_t *d_transform0, const cost_t *d_transform1,
uint8_t *d_cost, const int rows, const int cols ) {
//const int Dmax= blockDim.x; // Dmax is CTA size
const int y= blockIdx.x; // y is CTA Identifier
const int THRid = threadIdx.x; // THRid is Thread Identifier
__shared__ cost_t SharedMatch[2*MAX_DISPARITY];
__shared__ cost_t SharedBase [MAX_DISPARITY];
SharedMatch [MAX_DISPARITY+THRid] = d_transform1[y*cols+0]; // init position
int n_iter = cols/MAX_DISPARITY;
for (int ix=0; ix<n_iter; ix++) {
const int x = ix*MAX_DISPARITY;
SharedMatch [THRid] = SharedMatch [THRid + MAX_DISPARITY];
SharedMatch [THRid+MAX_DISPARITY] = d_transform1 [y*cols+x+THRid];
SharedBase [THRid] = d_transform0 [y*cols+x+THRid];
__syncthreads();
for (int i=0; i<MAX_DISPARITY; i++) {
const cost_t base = SharedBase [i];
const cost_t match = SharedMatch[(MAX_DISPARITY-1-THRid)+1+i];
d_cost[(y*cols+x+i)*MAX_DISPARITY+THRid] = popcount( base ^ match );
}
__syncthreads();
}
// For images with cols not multiples of MAX_DISPARITY
const int x = MAX_DISPARITY*(cols/MAX_DISPARITY);
const int left = cols-x;
if(left > 0) {
SharedMatch [THRid] = SharedMatch [THRid + MAX_DISPARITY];
if(THRid < left) {
SharedMatch [THRid+MAX_DISPARITY] = d_transform1 [y*cols+x+THRid];
SharedBase [THRid] = d_transform0 [y*cols+x+THRid];
}
__syncthreads();
for (int i=0; i<left; i++) {
const cost_t base = SharedBase [i];
const cost_t match = SharedMatch[(MAX_DISPARITY-1-THRid)+1+i];
d_cost[(y*cols+x+i)*MAX_DISPARITY+THRid] = popcount( base ^ match );
}
__syncthreads();
}
}