-
Notifications
You must be signed in to change notification settings - Fork 1
/
test_play.py
177 lines (140 loc) · 5.91 KB
/
test_play.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import torch
import numpy as np
from accelerate import Accelerator
import configargparse
import yaml
import os
from model import build_model
def parse_args_and_init():
parser = configargparse.ArgParser(description="Test Play",
config_file_parser_class=configargparse.YAMLConfigFileParser)
parser.add('-c', '--config', is_config_file=True, help='Config file path')
parser.add('-p', '--checkpoint', required=True, help="Model checkpoint file to test")
parser.add('--use_cpu', action='store_true', help="Use cpu only")
parser.add('--model_type', required=True, help="Model type")
parser.add('--model_args', type=yaml.safe_load, default={}, help="Extra model arguments")
parser.add('--board_width', type=int, default=15, help="Board width")
parser.add('--board_height', type=int, default=15, help="Board height")
args, _ = parser.parse_known_args() # parse args
parser.print_values() # print out values
print('-' * 60)
return args
class Board():
def __init__(self, board_width, board_height, fixed_side_input=False):
self.board = np.zeros((2, board_height, board_width), dtype=np.int8)
self.side_to_move = 0
self.move_history = []
self.fixed_side_input = fixed_side_input
@property
def ply(self):
return len(self.move_history)
@property
def width(self):
return self.board.shape[2]
@property
def height(self):
return self.board.shape[1]
def flip_side(self):
self.side_to_move = 1 - self.side_to_move
def move(self, x, y):
assert self.is_legal(x, y), "Pos is not legal!"
self.board[self.side_to_move, y, x] = 1
self.move_history.append((x, y, self.side_to_move))
self.flip_side()
def undo(self):
assert len(self.move_history) > 0, "Can not undo when board is empty!"
x, y, stm = self.move_history.pop()
self.board[stm, y, x] = 0
self.side_to_move = stm
def is_legal(self, x, y):
if x < 0 or x >= self.board.shape[2] or y < 0 or y >= self.board.shape[1]:
return False
return self.board[0, y, x] == 0 and self.board[1, y, x] == 0
def get_data(self):
if not self.fixed_side_input and self.side_to_move == 1:
board_input = np.flip(self.board, axis=0).copy()
else:
board_input = self.board
return {
'board_size': torch.tensor(self.board.shape, dtype=torch.int8),
'board_input': torch.from_numpy(board_input),
'stm_input': torch.FloatTensor([-1 if self.side_to_move == 0 else 1])
}
def __str__(self):
s = ' '
for x in range(self.board.shape[2]):
s += chr(x + ord('A')) + ' '
s += '\n'
for y in range(self.board.shape[1]):
s += f'{y + 1:2d} '
for x in range(self.board.shape[2]):
if self.board[0, y, x]:
s += 'X '
elif self.board[1, y, x]:
s += 'O '
else:
s += '. '
s += '\n'
return s
def next_move(board, model, data):
# add batch dimension
for k in data:
if isinstance(data[k], torch.Tensor):
data[k] = torch.unsqueeze(data[k], dim=0)
value, policy, *retvals = model(data)
# remove batch dimension
value = value.squeeze(0)
policy = policy.squeeze(0)
# apply activation function
value = torch.softmax(value, dim=0)
policy = torch.softmax(policy.flatten(), dim=0)
# calc winrate, drawrate and best valid move
winrate = (value[0] - value[1] + 1) / 2
drawrate = value[2]
movelist = torch.argsort(policy, descending=True)
for move in movelist:
move = move.cpu().item()
move_x, move_y = move % board.width, move // board.width
if board.is_legal(move_x, move_y):
bestmove = move
break
bestmove_x, bestmove_y = bestmove % board.width, bestmove // board.width
return winrate, drawrate, (bestmove_x, bestmove_y)
def input_move():
input_str = input("Input your move (empty for AI move): ")
if input_str == "":
return None
x, y = input_str[0].upper(), input_str[1:]
return ord(x) - ord('A'), int(y) - 1
def test_play(checkpoint, use_cpu, model_type, model_args, board_width, board_height, **kwargs):
if not os.path.exists(checkpoint) or not os.path.isfile(checkpoint):
raise RuntimeError(f'Checkpoint {checkpoint} must be a valid file')
# use accelerator
accelerator = Accelerator(cpu=use_cpu)
# build model
model = build_model(model_type, **model_args)
# load checkpoint if exists
state_dicts = torch.load(checkpoint, map_location=accelerator.device)
model.load_state_dict(state_dicts['model'])
epoch, it = state_dicts.get('epoch', 0), state_dicts.get('iteration', 0)
accelerator.print(f'Loaded from checkpoint: {checkpoint}, epoch: {epoch}, it: {it}')
# accelerate model testing
model = accelerator.prepare(model)
# test play loop
board = Board(board_width, board_height)
with torch.no_grad():
model.eval()
while board.ply + 1 < board.width * board.height:
print(board)
move = input_move()
if move is None:
data = board.get_data()
for key in data.keys():
data[key] = data[key].to(accelerator.device)
winrate, drawrate, move = next_move(board, model, data)
print(f"winrate: {winrate:.4f}, drawrate: {drawrate:.4f}, " +
f"bestmove: {chr(move[0] + ord('A'))}{move[1] + 1}")
board.move(*move)
if __name__ == "__main__":
args = parse_args_and_init()
test_play(**vars(args))