-
Notifications
You must be signed in to change notification settings - Fork 5
/
match.sls
611 lines (552 loc) · 23.7 KB
/
match.sls
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#!r6rs
;;;; match.scm -- portable hygienic pattern matcher
;;
;; This code is written by Alex Shinn and placed in the
;; Public Domain. All warranties are disclaimed.
;; Turned into an R6RS library by Derick Eddington, and modified to use
;; only-hygienic syntax-case so that ... can be used (original version
;; had to use ___), and modified to remove _ from syntax-rules/syntax-case
;; literals lists.
;; This is a full superset of the popular MATCH package by Andrew
;; Wright.
;; This is a simple generative pattern matcher - each pattern is
;; expanded into the required tests, calling a failure continuation if
;; the tests fail. This makes the logic easy to follow and extend,
;; but produces sub-optimal code in cases where you have many similar
;; clauses due to repeating the same tests. Nonetheless a smart
;; compiler should be able to remove the redundant tests. For
;; MATCH-LET and DESTRUCTURING-BIND type uses there is no performance
;; hit.
;; The original version was written on 2006/11/29 and described in the
;; following Usenet post:
;; http://groups.google.com/group/comp.lang.scheme/msg/0941234de7112ffd
;; and is still available at
;; http://synthcode.com/scheme/match-simple.scm
;; A variant of this file which uses COND-EXPAND in a few places can
;; be found at
;; http://synthcode.com/scheme/match-cond-expand.scm
;;
;; 2008/03/20 - fixing bug where (a ...) matched non-lists
;; 2008/03/15 - removing redundant check in vector patterns
;; 2008/03/06 - you can use `...' portably now (thanks to Taylor Campbell)
;; 2007/09/04 - fixing quasiquote patterns
;; 2007/07/21 - allowing ellipse patterns in non-final list positions
;; 2007/04/10 - fixing potential hygiene issue in match-check-ellipse
;; (thanks to Taylor Campbell)
;; 2007/04/08 - clean up, commenting
;; 2006/12/24 - bugfixes
;; 2006/12/01 - non-linear patterns, shared variables in OR, get!/set!
(library (mpl match)
(export match match-let match-let* match-letrec match-lambda match-lambda*)
(import
(rnrs)
(rnrs mutable-pairs))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; The basic interface. MATCH just performs some basic syntax
;; validation, binds the match expression to a temporary variable `v',
;; and passes it on to MATCH-NEXT. It's a constant throughout the
;; code below that the binding `v' is a direct variable reference, not
;; an expression.
(define-syntax match
(lambda (stx)
(syntax-case stx ()
((match)
(syntax-violation #f "missing match expression" stx))
((match atom)
(syntax-violation #f "missing match clause" stx))
((match (app ...) (pat . body) ...)
#'(let ((v (app ...)))
(match-next v (app ...) (set! (app ...)) (pat . body) ...)))
((match #(vec ...) (pat . body) ...)
#'(let ((v #(vec ...)))
(match-next v v (set! v) (pat . body) ...)))
((match atom (pat . body) ...)
#'(match-next atom atom (set! atom) (pat . body) ...))
)))
;; MATCH-NEXT passes each clause to MATCH-ONE in turn with its failure
;; thunk, which is expanded by recursing MATCH-NEXT on the remaining
;; clauses. `g' and `s' are the get! and set! expressions
;; respectively.
(define-syntax match-next
(syntax-rules (=>)
;; no more clauses, the match failed
((match-next v g s)
(assertion-violation 'match "no matching pattern"))
;; named failure continuation
((match-next v g s (pat (=> failure) . body) . rest)
(let ((failure (lambda () (match-next v g s . rest))))
;; match-one analyzes the pattern for us
(match-one v pat g s (match-drop-ids (begin . body)) (failure) ())))
;; anonymous failure continuation, give it a dummy name
((match-next v g s (pat . body) . rest)
(match-next v g s (pat (=> failure) . body) . rest))))
;; MATCH-ONE first checks for ellipse patterns, otherwise passes on to
;; MATCH-TWO.
(define-syntax match-one
(syntax-rules ()
;; If it's a list of two values, check to see if the second one is
;; an ellipse and handle accordingly, otherwise go to MATCH-TWO.
((match-one v (p q . r) g s sk fk i)
(match-check-ellipse
q
(match-extract-vars p (match-gen-ellipses v p r g s sk fk i) i ())
(match-two v (p q . r) g s sk fk i)))
;; Otherwise, go directly to MATCH-TWO.
((match-one . x)
(match-two . x))))
;; This is the guts of the pattern matcher. We are passed a lot of
;; information in the form:
;;
;; (match-two var pattern getter setter success-k fail-k (ids ...))
;;
;; usually abbreviated
;;
;; (match-two v p g s sk fk i)
;;
;; where VAR is the symbol name of the current variable we are
;; matching, PATTERN is the current pattern, getter and setter are the
;; corresponding accessors (e.g. CAR and SET-CAR! of the pair holding
;; VAR), SUCCESS-K is the success continuation, FAIL-K is the failure
;; continuation (which is just a thunk call and is thus safe to expand
;; multiple times) and IDS are the list of identifiers bound in the
;; pattern so far.
(define-syntax match-two
(lambda (stx)
(define (ellipses? x)
(and (identifier? x) (free-identifier=? x #'(... ...))))
(define (underscore? x)
(and (identifier? x) (free-identifier=? x #'_)))
(syntax-case stx (quote quasiquote ? $ = and or not set! get!)
((match-two v () g s (sk ...) fk i)
#'(if (null? v) (sk ... i) fk))
((match-two v (quote p) g s (sk ...) fk i)
#'(if (equal? v 'p) (sk ... i) fk))
((match-two v (quasiquote p) g s sk fk i)
#'(match-quasiquote v p g s sk fk i))
((match-two v (and) g s (sk ...) fk i) #'(sk ... i))
((match-two v (and p q ...) g s sk fk i)
#'(match-one v p g s (match-one v (and q ...) g s sk fk) fk i))
((match-two v (or) g s sk fk i) #'fk)
((match-two v (or p) g s sk fk i)
#'(match-one v p g s sk fk i))
((match-two v (or p ...) g s sk fk i)
#'(match-extract-vars (or p ...)
(match-gen-or v (p ...) g s sk fk i)
i
()))
((match-two v (not p) g s (sk ...) fk i)
#'(match-one v p g s (match-drop-ids fk) (sk ... i) i))
((match-two v (get! getter) g s (sk ...) fk i)
#'(let ((getter (lambda () g))) (sk ... i)))
((match-two v (set! setter) g (s ...) (sk ...) fk i)
#'(let ((setter (lambda (x) (s ... x)))) (sk ... i)))
((match-two v (? pred p ...) g s sk fk i)
#'(if (pred v) (match-one v (and p ...) g s sk fk i) fk))
((match-two v (= proc p) g s sk fk i)
#'(let ((w (proc v)))
(match-one w p g s sk fk i)))
((match-two v (p ___ . r) g s sk fk i)
(ellipses? #'___)
#'(match-extract-vars p (match-gen-ellipses v p r g s sk fk i) i ()))
((match-two v (p) g s sk fk i)
#'(if (and (pair? v) (null? (cdr v)))
(let ((w (car v)))
(match-one w p (car v) (set-car! v) sk fk i))
fk))
((match-two v (p . q) g s sk fk i)
#'(if (pair? v)
(let ((w (car v)) (x (cdr v)))
(match-one w p (car v) (set-car! v)
(match-one x q (cdr v) (set-cdr! v) sk fk)
fk
i))
fk))
((match-two v #(p ...) g s sk fk i)
#'(match-vector v 0 () (p ...) sk fk i))
((match-two v us g s (sk ...) fk i) (underscore? #'us) #'(sk ... i))
;; Not a pair or vector or special literal, test to see if it's a
;; new symbol, in which case we just bind it, or if it's an
;; already bound symbol or some other literal, in which case we
;; compare it with EQUAL?.
((match-two v x g s (sk ...) fk (id ...))
#'(let-syntax
((new-sym?
(syntax-rules (id ...)
((new-sym? x sk2 fk2) sk2)
((new-sym? y sk2 fk2) fk2))))
(new-sym? random-sym-to-match
(let ((x v)) (sk ... (id ... x)))
(if (equal? v x) (sk ... (id ...)) fk))))
)))
;; QUASIQUOTE patterns
(define-syntax match-quasiquote
(syntax-rules (unquote unquote-splicing quasiquote)
((_ v (unquote p) g s sk fk i)
(match-one v p g s sk fk i))
((_ v ((unquote-splicing p) . rest) g s sk fk i)
(if (pair? v)
(match-one v
(p . tmp)
(match-quasiquote tmp rest g s sk fk)
fk
i)
fk))
((_ v (quasiquote p) g s sk fk i . depth)
(match-quasiquote v p g s sk fk i #f . depth))
((_ v (unquote p) g s sk fk i x . depth)
(match-quasiquote v p g s sk fk i . depth))
((_ v (unquote-splicing p) g s sk fk i x . depth)
(match-quasiquote v p g s sk fk i . depth))
((_ v (p . q) g s sk fk i . depth)
(if (pair? v)
(let ((w (car v)) (x (cdr v)))
(match-quasiquote
w p g s
(match-quasiquote-step x q g s sk fk depth)
fk i . depth))
fk))
((_ v #(elt ...) g s sk fk i . depth)
(if (vector? v)
(let ((ls (vector->list v)))
(match-quasiquote ls (elt ...) g s sk fk i . depth))
fk))
((_ v x g s sk fk i . depth)
(match-one v 'x g s sk fk i))))
(define-syntax match-quasiquote-step
(syntax-rules ()
((match-quasiquote-step x q g s sk fk depth i)
(match-quasiquote x q g s sk fk i . depth))
))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Utilities
;; A CPS utility that takes two values and just expands into the
;; first.
(define-syntax match-drop-ids
(syntax-rules ()
((_ expr ids ...) expr)))
;; Generating OR clauses just involves binding the success
;; continuation into a thunk which takes the identifiers common to
;; each OR clause, and trying each clause, calling the thunk as soon
;; as we succeed.
(define-syntax match-gen-or
(syntax-rules ()
((_ v p g s (sk ...) fk (i ...) ((id id-ls) ...))
(let ((sk2 (lambda (id ...) (sk ... (i ... id ...)))))
(match-gen-or-step
v p g s (match-drop-ids (sk2 id ...)) fk (i ...))))))
(define-syntax match-gen-or-step
(syntax-rules ()
((_ v () g s sk fk i)
;; no OR clauses, call the failure continuation
fk)
((_ v (p) g s sk fk i)
;; last (or only) OR clause, just expand normally
(match-one v p g s sk fk i))
((_ v (p . q) g s sk fk i)
;; match one and try the remaining on failure
(match-one v p g s sk (match-gen-or-step v q g s sk fk i) i))
))
;; We match a pattern (p ...) by matching the pattern p in a loop on
;; each element of the variable, accumulating the bound ids into lists.
;; Look at the body - it's just a named let loop, matching each
;; element in turn to the same pattern. This illustrates the
;; simplicity of this generative-style pattern matching. It would be
;; just as easy to implement a tree searching pattern.
(define-syntax match-gen-ellipses
(syntax-rules ()
((_ v p () g s (sk ...) fk i ((id id-ls) ...))
(match-check-identifier p
;; simplest case equivalent to ( . p), just bind the list
(let ((p v))
(if (list? p)
(sk ... i)
fk))
;; simple case, match all elements of the list
(let loop ((ls v) (id-ls '()) ...)
(cond
((null? ls)
(let ((id (reverse id-ls)) ...) (sk ... i)))
((pair? ls)
(let ((w (car ls)))
(match-one w p (car ls) (set-car! ls)
(match-drop-ids (loop (cdr ls) (cons id id-ls) ...))
fk i)))
(else
fk)))))
((_ v p (r ...) g s (sk ...) fk i ((id id-ls) ...))
;; general case, trailing patterns to match
(match-verify-no-ellipses
(r ...)
(let* ((tail-len (length '(r ...)))
(ls v)
(len (length ls)))
(if (< len tail-len)
fk
(let loop ((ls ls) (n len) (id-ls '()) ...)
(cond
((= n tail-len)
(let ((id (reverse id-ls)) ...)
(match-one ls (r ...) #f #f (sk ... i) fk i)))
((pair? ls)
(let ((w (car ls)))
(match-one w p (car ls) (set-car! ls)
(match-drop-ids
(loop (cdr ls) (- n 1) (cons id id-ls) ...))
fk
i)))
(else
fk)))))))
))
(define-syntax match-verify-no-ellipses
(syntax-rules ()
((_ (x . y) sk)
(match-check-ellipse
x
(match-syntax-error
"multiple ellipse patterns not allowed at same level")
(match-verify-no-ellipses y sk)))
((_ x sk) sk)
))
;; Vector patterns are just more of the same, with the slight
;; exception that we pass around the current vector index being
;; matched.
(define-syntax match-vector
(lambda (stx)
(define (ellipses? x)
(and (identifier? x) (free-identifier=? x #'(... ...))))
(syntax-case stx ()
((_ v n pats (p q) sk fk i)
#'(match-check-ellipse q
(match-vector-ellipses v n pats p sk fk i)
(match-vector-two v n pats (p q) sk fk i)))
((_ v n pats (p ___) sk fk i)
(ellipses? #'___)
#'(match-vector-ellipses v n pats p sk fk i))
((_ . x)
#'(match-vector-two . x)))))
;; Check the exact vector length, then check each element in turn.
(define-syntax match-vector-two
(syntax-rules ()
((_ v n ((pat index) ...) () sk fk i)
(if (vector? v)
(let ((len (vector-length v)))
(if (= len n)
(match-vector-step v ((pat index) ...) sk fk i)
fk))
fk))
((_ v n (pats ...) (p . q) sk fk i)
(match-vector v (+ n 1) (pats ... (p n)) q sk fk i))
))
(define-syntax match-vector-step
(syntax-rules ()
((_ v () (sk ...) fk i) (sk ... i))
((_ v ((pat index) . rest) sk fk i)
(let ((w (vector-ref v index)))
(match-one w pat (vector-ref v index) (vector-set! v index)
(match-vector-step v rest sk fk)
fk i)))))
;; With a vector ellipse pattern we first check to see if the vector
;; length is at least the required length.
(define-syntax match-vector-ellipses
(syntax-rules ()
((_ v n ((pat index) ...) p sk fk i)
(if (vector? v)
(let ((len (vector-length v)))
(if (>= len n)
(match-vector-step v ((pat index) ...)
(match-vector-tail v p n len sk fk)
fk i)
fk))
fk))))
(define-syntax match-vector-tail
(syntax-rules ()
((_ v p n len sk fk i)
(match-extract-vars p (match-vector-tail-two v p n len sk fk i) i ()))))
(define-syntax match-vector-tail-two
(syntax-rules ()
((_ v p n len (sk ...) fk i ((id id-ls) ...))
(let loop ((j n) (id-ls '()) ...)
(if (>= j len)
(let ((id (reverse id-ls)) ...) (sk ... i))
(let ((w (vector-ref v j)))
(match-one w p (vector-ref v j) (vetor-set! v j)
(match-drop-ids (loop (+ j 1) (cons id id-ls) ...))
fk i)))))))
;; Extract all identifiers in a pattern. A little more complicated
;; than just looking for symbols, we need to ignore special keywords
;; and not pattern forms (such as the predicate expression in ?
;; patterns).
;;
;; (match-extract-vars pattern continuation (ids ...) (new-vars ...))
(define-syntax match-extract-vars
(lambda (stx)
(define (ellipses? x)
(and (identifier? x) (free-identifier=? x #'(... ...))))
(define (underscore? x)
(and (identifier? x) (free-identifier=? x #'_)))
(syntax-case stx (? $ = quote quasiquote and or not get! set!)
((match-extract-vars (? pred . p) k i v)
#'(match-extract-vars p k i v))
((match-extract-vars ($ rec . p) k i v)
#'(match-extract-vars p k i v))
((match-extract-vars (= proc p) k i v)
#'(match-extract-vars p k i v))
((match-extract-vars (quote x) (k ...) i v)
#'(k ... v))
((match-extract-vars (quasiquote x) k i v)
#'(match-extract-quasiquote-vars x k i v (#t)))
((match-extract-vars (and . p) k i v)
#'(match-extract-vars p k i v))
((match-extract-vars (or . p) k i v)
#'(match-extract-vars p k i v))
((match-extract-vars (not . p) k i v)
#'(match-extract-vars p k i v))
;; A non-keyword pair, expand the CAR with a continuation to
;; expand the CDR.
((match-extract-vars (p q . r) k i v)
#'(match-check-ellipse
q
(match-extract-vars (p . r) k i v)
(match-extract-vars p (match-extract-vars-step (q . r) k i v) i ())))
((match-extract-vars (p . q) k i v)
#'(match-extract-vars p (match-extract-vars-step q k i v) i ()))
((match-extract-vars #(p ...) k i v)
#'(match-extract-vars (p ...) k i v))
((match-extract-vars us (k ...) i v) (underscore? #'us) #'(k ... v))
((match-extract-vars ___ (k ...) i v) (ellipses? #'___) #'(k ... v))
;; This is the main part, the only place where we might add a new
;; var if it's an unbound symbol.
((match-extract-vars p (k ...) (i ...) v)
#'(let-syntax
((new-sym?
(syntax-rules (i ...)
((new-sym? p sk fk) sk)
((new-sym? x sk fk) fk))))
(new-sym? random-sym-to-match
(k ... ((p p-ls) . v))
(k ... v))))
)))
;; Stepper used in the above so it can expand the CAR and CDR
;; separately.
(define-syntax match-extract-vars-step
(syntax-rules ()
((_ p k i v ((v2 v2-ls) ...))
(match-extract-vars p k (v2 ... . i) ((v2 v2-ls) ... . v)))
))
(define-syntax match-extract-quasiquote-vars
(syntax-rules (quasiquote unquote unquote-splicing)
((match-extract-quasiquote-vars (quasiquote x) k i v d)
(match-extract-quasiquote-vars x k i v (#t . d)))
((match-extract-quasiquote-vars (unquote-splicing x) k i v d)
(match-extract-quasiquote-vars (unquote x) k i v d))
((match-extract-quasiquote-vars (unquote x) k i v (#t))
(match-extract-vars x k i v))
((match-extract-quasiquote-vars (unquote x) k i v (#t . d))
(match-extract-quasiquote-vars x k i v d))
((match-extract-quasiquote-vars (x . y) k i v (#t . d))
(match-extract-quasiquote-vars
x
(match-extract-quasiquote-vars-step y k i v d) i ()))
((match-extract-quasiquote-vars #(x ...) k i v (#t . d))
(match-extract-quasiquote-vars (x ...) k i v d))
((match-extract-quasiquote-vars x (k ...) i v (#t . d))
(k ... v))
))
(define-syntax match-extract-quasiquote-vars-step
(syntax-rules ()
((_ x k i v d ((v2 v2-ls) ...))
(match-extract-quasiquote-vars x k (v2 ... . i) ((v2 v2-ls) ... . v) d))
))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Gimme some sugar baby.
(define-syntax match-lambda
(syntax-rules ()
((_ clause ...) (lambda (expr) (match expr clause ...)))))
(define-syntax match-lambda*
(syntax-rules ()
((_ clause ...) (lambda expr (match expr clause ...)))))
(define-syntax match-let
(syntax-rules ()
((_ (vars ...) . body)
(match-let/helper let () () (vars ...) . body))
((_ loop . rest)
(match-named-let loop () . rest))))
(define-syntax match-letrec
(syntax-rules ()
((_ vars . body) (match-let/helper letrec () () vars . body))))
(define-syntax match-let/helper
(syntax-rules ()
((_ let ((var expr) ...) () () . body)
(let ((var expr) ...) . body))
((_ let ((var expr) ...) ((pat tmp) ...) () . body)
(let ((var expr) ...)
(match-let* ((pat tmp) ...)
. body)))
((_ let (v ...) (p ...) (((a . b) expr) . rest) . body)
(match-let/helper
let (v ... (tmp expr)) (p ... ((a . b) tmp)) rest . body))
((_ let (v ...) (p ...) ((#(a ...) expr) . rest) . body)
(match-let/helper
let (v ... (tmp expr)) (p ... (#(a ...) tmp)) rest . body))
((_ let (v ...) (p ...) ((a expr) . rest) . body)
(match-let/helper let (v ... (a expr)) (p ...) rest . body))
))
(define-syntax match-named-let
(syntax-rules ()
((_ loop ((pat expr var) ...) () . body)
(let loop ((var expr) ...)
(match-let ((pat var) ...)
. body)))
((_ loop (v ...) ((pat expr) . rest) . body)
(match-named-let loop (v ... (pat expr tmp)) rest . body))))
(define-syntax match-let*
(syntax-rules ()
((_ () . body)
(begin . body))
((_ ((pat expr) . rest) . body)
(match expr (pat (match-let* rest . body))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Otherwise COND-EXPANDed bits.
;; This *should* work, but doesn't :(
;; (define-syntax match-check-ellipse
;; (syntax-rules (...)
;; ((_ ... sk fk) sk)
;; ((_ x sk fk) fk)))
;; This is a little more complicated, and introduces a new let-syntax,
;; but should work portably in any R[56]RS Scheme. Taylor Campbell
;; originally came up with the idea.
(define-syntax match-check-ellipse
(syntax-rules ()
;; these two aren't necessary but provide fast-case failures
((match-check-ellipse (a . b) success-k failure-k) failure-k)
((match-check-ellipse #(a ...) success-k failure-k) failure-k)
;; matching an atom
((match-check-ellipse id success-k failure-k)
(let-syntax ((ellipse? (syntax-rules ()
;; iff `id' is `...' here then this will
;; match a list of any length
((ellipse? (foo id) sk fk) sk)
((ellipse? other sk fk) fk))))
;; this list of three elements will only many the (foo id) list
;; above if `id' is `...'
(ellipse? (a b c) success-k failure-k)))))
;; This is portable but can be more efficient with non-portable
;; extensions. This trick was originally discovered by Oleg Kiselyov.
(define-syntax match-check-identifier
(syntax-rules ()
;; fast-case failures, lists and vectors are not identifiers
((_ (x . y) success-k failure-k) failure-k)
((_ #(x ...) success-k failure-k) failure-k)
;; x is an atom
((_ x success-k failure-k)
(let-syntax
((sym?
(syntax-rules ()
;; if the symbol `abracadabra' matches x, then x is a
;; symbol
((sym? x sk fk) sk)
;; otherwise x is a non-symbol datum
((sym? y sk fk) fk))))
(sym? abracadabra success-k failure-k)))
))
)