Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Getting error while modeling with SHO model #220

Open
ajaykhoj opened this issue Nov 13, 2023 · 0 comments
Open

Getting error while modeling with SHO model #220

ajaykhoj opened this issue Nov 13, 2023 · 0 comments

Comments

@ajaykhoj
Copy link

Hi,

I am using this Celerite code for very first time. In my study, I am modeling a data set with SHO model. As documented, I am following all step like, set the prior values for SHO model, when I run the code and simulate data, outcome containing error given as :
In first place code is given -
""""""""". code """""""""""""""
import celerite
from celerite import terms
Q3 = 1.0 / np.sqrt(2.0)
w3 = 0.008
S3 = np.var(y) / (w3 * Q3)
bounds_non_periodic = dict(log_S0=(-10, 10), log_Q=(-10, 10), log_omega0=(-10, 10))
kernel3 = terms.SHOTerm(log_S0=np.log(S3), log_Q=np.log(Q3), log_omega0=np.log(w3))
#kernel3.freeze_parameter("log_Q")
kernel_combined = kernel3

gp = celerite.GP(kernel_combined)
gp.compute(MJD, dy) # You always need to call compute once.
print("Initial log likelihood: {0}".format(gp.log_likelihood(y)))

from scipy.optimize import minimize
def neg_log_like(params, y, gp):
gp.set_parameter_vector(params)
return -gp.log_likelihood(y)

initial_params = gp.get_parameter_vector()
bounds = gp.get_parameter_bounds()
r = minimize(neg_log_like, initial_params, method="L-BFGS-B", bounds=bounds, args=(y, gp))
gp.set_parameter_vector(r.x)
print(r)

x = np.linspace(np.min(MJD), np.max(MJD), 500)
pred_mean, pred_var = gp.predict(y, x, return_var=True)
pred_std = np.sqrt(pred_var)
pred_mean
"""""""""""""""""""""""""""""""""""""""""""""""""""""

Error : - when I generate the mean and var using gp.predict command, getting outcome as :
array([3.07314316e-08, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,
nan, nan, nan, nan,

why is that, why am i getting "nan"?

I have gone through many article in which used oscillator models are written as : SHO * n, where n <= 4, how to build a kernel for this ?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant