-
Notifications
You must be signed in to change notification settings - Fork 182
/
Copy pathfriendster_network.py
211 lines (150 loc) · 6.06 KB
/
friendster_network.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
##########################
# Finding Key Connectors #
##########################
# dictionary of each user and their id
users = [
{"id": 0, "name": "Hero"},
{"id": 1, "name": "Dunn"},
{"id": 2, "name": "Sue"},
{"id": 3, "name": "Chi"},
{"id": 4, "name": "Thor"},
{"id": 5, "name": "Clive"},
{"id": 6, "name": "Hicks"},
{"id": 7, "name": "Devin"},
{"id": 8, "name": "Kate"},
{"id": 9, "name": "Klein"}
]
# friendship data as a list of tuples
friendships = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4),
(4, 5), (5, 6), (5, 7), (6, 8), (7, 8), (8, 9)]
# assign empty list to each user
for user in users:
user["friends"] = []
for i, j in friendships:
users[i]["friends"].append(users[j]) # add i as a friend of j
users[j]["friends"].append(users[i]) # add j as a friend of i
def number_of_friends(user):
return len(user["friends"])
total_connections = sum(number_of_friends(user) for user in users)
print(total_connections)
num_users = len(users)
avg_connections = total_connections / num_users
print(avg_connections)
num_friends_by_id = [(user["id"], number_of_friends(user)) for user in users]
print(num_friends_by_id)
###############################
# Data Scientist You May Know #
###############################
def friends_of_friend_ids_bad(user):
return [foaf["id"]
for friend in user["friends"] # for each of user's friend
for foaf in friend["friends"]] # for each of their friends
print(friends_of_friend_ids_bad(users[0])) # Data Scientists Hero may know
from collections import Counter
def not_the_same(user, other_user):
# Two users are not same if they have different ids
return user["id"] != other_user["id"]
def not_friends(user, other_user):
# other_user is not a friend if he is not in user["friends"]
return all(not_the_same(friend, other_user) for friend in user["friends"])
def friends_of_friend_ids(user):
return Counter(foaf["id"]
for friend in user["friends"] # for each of my friends
for foaf in friend["friends"] # count *their* friends
if not_the_same(user, foaf) # who aren't me
and not_friends(user, foaf)) # and aren't my friends
print(friends_of_friend_ids(users[3])) # Data Scientists Chi may know
interests = [
(0, "Hadoop"), (0, "Big Data"), (0, "HBase"), (0, "Java"),
(0, "Spark"), (0, "Storm"), (0, "Cassandra"),
(1, "NoSQL"), (1, "MongoDB"), (1, "Cassandra"), (1, "HBase"),
(1, "Postgres"), (2, "Python"), (2, "scikit-learn"), (2, "scipy"),
(2, "numpy"), (2, "statsmodels"), (2, "pandas"), (3, "R"), (3, "Python"),
(3, "statistics"), (3, "regression"), (3, "probability"),
(4, "machine learning"), (4, "regression"), (4, "decision trees"),
(4, "libsvm"), (5, "Python"), (5, "R"), (5, "Java"), (5, "C++"),
(5, "Haskell"), (5, "programming languages"), (6, "statistics"),
(6, "probability"), (6, "mathematics"), (6, "theory"),
(7, "machine learning"), (7, "scikit-learn"), (7, "Mahout"),
(7, "neural networks"), (8, "neural networks"), (8, "deep learning"),
(8, "Big Data"), (8, "artificial intelligence"), (9, "Hadoop"),
(9, "Java"), (9, "MapReduce"), (9, "Big Data")
]
def data_scientists_who_like(target_interest):
return [user_id
for user_id, user_interest in interests
if user_interest == target_interest]
from collections import defaultdict
user_ids_by_interest = defaultdict(list)
for user_id, interest in interests:
user_ids_by_interest[interest].append(user_id)
print(user_ids_by_interest)
interests_by_user_ids = defaultdict(list)
for user_id, interest in interests:
interests_by_user_ids[user_id].append(interest)
print(interests_by_user_ids)
def most_common_interests_with(user):
return Counter(interested_user_id
for interest in interests_by_user_ids[user["id"]]
for interested_user_id in user_ids_by_interest[interest]
if interested_user_id != user["id"])
print(most_common_interests_with(users[6]))
###########################
# Salaries and Experience #
###########################
salaries_and_tenures = [(83000, 8.7), (88000, 8.1),
(48000, 0.7), (76000, 6),
(69000, 6.5), (76000, 7.5),
(60000, 2.5), (83000, 10),
(48000, 1.9), (63000, 4.2)]
from matplotlib import pyplot as plt
def make_chart_salaries_by_tenure():
tenures = [tenure for salary, tenure in salaries_and_tenures]
salaries = [salary for salary, tenure in salaries_and_tenures]
plt.scatter(tenures, salaries)
plt.xlabel("Years Experience")
plt.ylabel("Salary")
plt.show()
salary_by_tenure = defaultdict(list)
for salary, tenure in salaries_and_tenures:
salary_by_tenure[tenure].append(salary)
average_salary_by_tenure = {
tenure: sum(salaries) / len(salaries)
for tenure, salaries in salary_by_tenure.items()
}
print(average_salary_by_tenure)
def tenure_bucket(tenure):
if tenure < 2:
return "less than two"
elif tenure < 5:
return "between two and five"
else:
return "more than five"
salary_by_tenure_bucket = defaultdict(list)
for salary, tenure in salaries_and_tenures:
bucket = tenure_bucket(tenure)
salary_by_tenure_bucket[bucket].append(salary)
average_salary_by_bucket = {
tenure_bucket: sum(salaries) / len(salaries)
for tenure_bucket, salaries in salary_by_tenure_bucket.items()
}
print(average_salary_by_bucket)
#################
# Paid Accounts #
#################
def predict_paid_or_unpaid(years_experience):
if years_experience < 3.0:
return "paid"
elif years_experience < 8.5:
return "unpaid"
else:
return "paid"
#######################
# Topics of Interests #
#######################
words_and_counts = Counter(word
for user, interest in interests
for word in str(interest).lower().split())
for word, count in words_and_counts.most_common():
if count > 1:
print(word, count)