-
Notifications
You must be signed in to change notification settings - Fork 0
/
egbib.bib
824 lines (754 loc) · 34.2 KB
/
egbib.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
@incollection{alex_net,
title = {ImageNet Classification with Deep Convolutional Neural Networks},
author = {Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E},
booktitle = {Advances in Neural Information Processing Systems 25},
editor = {F. Pereira and C. J. C. Burges and L. Bottou and K. Q. Weinberger},
pages = {1097--1105},
year = {2012},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf}
}
@inproceedings{deeplab_v1,
author = {Liang{-}Chieh Chen and
George Papandreou and
Iasonas Kokkinos and
Kevin Murphy and
Alan L. Yuille},
editor = {Yoshua Bengio and
Yann LeCun},
title = {Semantic Image Segmentation with Deep Convolutional Nets and Fully
Connected CRFs},
booktitle = {3rd International Conference on Learning Representations, {ICLR} 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings},
year = {2015},
url = {http://arxiv.org/abs/1412.7062},
timestamp = {Thu, 25 Jul 2019 14:25:40 +0200},
biburl = {https://dblp.org/rec/journals/corr/ChenPKMY14.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{rfh_objdet,
author = {Girshick, Ross and Donahue, Jeff and Darrell, Trevor and Malik, Jitendra},
title = {Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation},
year = {2014},
isbn = {9781479951185},
publisher = {IEEE Computer Society},
address = {USA},
url = {https://doi.org/10.1109/CVPR.2014.81},
doi = {10.1109/CVPR.2014.81},
booktitle = {Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition},
pages = {580–587},
numpages = {8},
series = {CVPR ’14}
}
@incollection{faster_rcnn,
title = {Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks},
author = {Ren, Shaoqing and He, Kaiming and Girshick, Ross and Sun, Jian},
booktitle = {Advances in Neural Information Processing Systems 28},
editor = {C. Cortes and N. D. Lawrence and D. D. Lee and M. Sugiyama and R. Garnett},
pages = {91--99},
year = {2015},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf}
}
@inproceedings{hr_net,
title={Deep High-Resolution Representation Learning for Human Pose Estimation},
author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
booktitle={CVPR},
year={2019}
}
@article{hr_net_pami,
title={Deep High-Resolution Representation Learning for Visual Recognition},
author={Jingdong Wang and Ke Sun and Tianheng Cheng and
Borui Jiang and Chaorui Deng and Yang Zhao and Dong Liu and Yadong Mu and
Mingkui Tan and Xinggang Wang and Wenyu Liu and Bin Xiao},
journal = {TPAMI},
year={2019}
}
@InProceedings{nvidia_cvpr19,
author = {Zhu, Yi and Sapra, Karan and Reda, Fitsum A. and Shih, Kevin J. and Newsam, Shawn and Tao, Andrew and Catanzaro, Bryan},
title = {Improving Semantic Segmentation via Video Propagation and Label Relaxation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@article{efficientps,
title={EfficientPS: Efficient Panoptic Segmentation},
author={Mohan, Rohit and Valada, Abhinav},
journal={arXiv preprint arXiv:2004.02307},
year={2020}
}
@inproceedings{sota_imclass,
author = {Touvron, Hugo and Vedaldi, Andrea and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
title = {Fixing the train-test resolution discrepancy},
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
year = {2019},
}
@article{sota_objdet,
title={ResNeSt: Split-Attention Networks},
author={Zhang, Hang and Wu, Chongruo and Zhang, Zhongyue and Zhu, Yi and Zhang, Zhi and Lin, Haibin and Sun, Yue and He, Tong and Muller, Jonas and Manmatha, R. and Li, Mu and Smola, Alexander},
journal={arXiv preprint arXiv:2004.08955},
year={2020}
}
@article{sota_objtrack,
title={Fast Visual Object Tracking with Rotated Bounding Boxes},
author={Chen, Bao Xin and Tsotsos, John K},
journal={arXiv preprint arXiv:1907.03892},
year={2019}
}
@article{fast_track,
title={Fast Online Object Tracking and Segmentation: A Unifying Approach},
author={Wang, Qiang and Zhang, Li and Bertinetto, Luca and Hu, Weiming and Torr, Philip HS},
journal={arXiv preprint arXiv:1812.05050},
year={2018}
}
@article{siamrpn,
title={SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks},
author={Li, Bo and Wu, Wei and Wang, Qiang and Zhang, Fangyi and Xing, Junliang and Yan, Junjie},
journal={arXiv preprint arXiv:1812.11703},
year={2018}
}
@InProceedings{semi_sup_seg_1,
author = {Zhou, Yi and He, Xiaodong and Huang, Lei and Liu, Li and Zhu, Fan and Cui, Shanshan and Shao, Ling},
title = {Collaborative Learning of Semi-Supervised Segmentation and Classification for Medical Images},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@InProceedings{lp_class,
author = {Iscen, Ahmet and Tolias, Giorgos and Avrithis, Yannis and Chum, Ondrej},
title = {Label Propagation for Deep Semi-Supervised Learning},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@InProceedings{semi_sup_seg_2,
author = {Lee, Jungbeom and Kim, Eunji and Lee, Sungmin and Lee, Jangho and Yoon, Sungroh},
title = {FickleNet: Weakly and Semi-Supervised Semantic Image Segmentation Using Stochastic Inference},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@InProceedings{temporal_cycle_1,
author = {Dwibedi, Debidatta and Aytar, Yusuf and Tompson, Jonathan and Sermanet, Pierre and Zisserman, Andrew},
title = {Temporal Cycle-Consistency Learning},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@InProceedings{vid_obj_seg_lp,
author = {Oh, Seoung Wug and Lee, Joon-Young and Xu, Ning and Kim, Seon Joo},
title = {Fast User-Guided Video Object Segmentation by Interaction-And-Propagation Networks},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@InProceedings{domain_seg_1,
author = {Vu, Tuan-Hung and Jain, Himalaya and Bucher, Maxime and Cord, Matthieu and Perez, Patrick},
title = {ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@InProceedings{domain_seg_2,
author = {Li, Yunsheng and Yuan, Lu and Vasconcelos, Nuno},
title = {Bidirectional Learning for Domain Adaptation of Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@InProceedings{domain_seg_3,
author = {Chen, Yun-Chun and Lin, Yen-Yu and Yang, Ming-Hsuan and Huang, Jia-Bin},
title = {CrDoCo: Pixel-Level Domain Transfer With Cross-Domain Consistency},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
@incollection{domain_seg_nips_2,
title = {Multi-source Domain Adaptation for Semantic Segmentation},
author = {Zhao, Sicheng and Li, Bo and Yue, Xiangyu and Gu, Yang and Xu, Pengfei and Hu, Runbo and Chai, Hua and Keutzer, Kurt},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {7287--7300},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/8949-multi-source-domain-adaptation-for-semantic-segmentation.pdf}
}
@incollection{semi_aug_1,
title = {MixMatch: A Holistic Approach to Semi-Supervised Learning},
author = {Berthelot, David and Carlini, Nicholas and Goodfellow, Ian and Papernot, Nicolas and Oliver, Avital and Raffel, Colin A},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {5049--5059},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/8749-mixmatch-a-holistic-approach-to-semi-supervised-learning.pdf}
}
@incollection{semi_aug_2,
title = {Consistency-based Semi-supervised Learning for Object detection},
author = {Jeong, Jisoo and Lee, Seungeui and Kim, Jeesoo and Kwak, Nojun},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {10759--10768},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/9259-consistency-based-semi-supervised-learning-for-object-detection.pdf}
}
@InProceedings{self_sup_iccv,
author = {Larsson, Mans and Stenborg, Erik and Toft, Carl and Hammarstrand, Lars and Sattler, Torsten and Kahl, Fredrik},
title = {Fine-Grained Segmentation Networks: Self-Supervised Segmentation for Improved Long-Term Visual Localization},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}
@inproceedings{self_sup_aaai,
author = {Zhan, Xiaohang and Liu, Ziwei and Luo, Ping and Tang, Xiaoou and Loy, Chen Change},
title = {Mix-and-Match Tuning for Self-Supervised Semantic Segmentation},
booktitle = {AAAI Conference on Artificial Intelligence (AAAI)},
month = {February},
year = {2018}
}
@inproceedings{cs_dataset,
title={The Cityscapes Dataset for Semantic Urban Scene Understanding},
author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt},
booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2016}
}
@article{as_dataset,
title={The apolloscape open dataset for autonomous driving and its application},
author={Wang, Peng and Huang, Xinyu and Cheng, Xinjing and Zhou, Dingfu and Geng, Qichuan and Yang, Ruigang},
journal={IEEE transactions on pattern analysis and machine intelligence},
year={2019},
publisher={IEEE}
}
@INPROCEEDINGS {argo_dataset,
author = {Ming-Fang Chang and John W Lambert and Patsorn Sangkloy and Jagjeet Singh
and Slawomir Bak and Andrew Hartnett and De Wang and Peter Carr
and Simon Lucey and Deva Ramanan and James Hays},
title = {Argoverse: 3D Tracking and Forecasting with Rich Maps},
booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2019}
}
@inproceedings{taskonomy2018,
title={Taskonomy: Disentangling Task Transfer Learning},
author={Amir R. Zamir and Alexander Sax and William B. Shen and Leonidas J. Guibas and Jitendra Malik and Silvio Savarese},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018},
organization={IEEE},
}
@misc{compete_1,
title={Improving Semantic Segmentation via Self-Training},
author={Yi Zhu and Zhongyue Zhang and Chongruo Wu and Zhi Zhang and Tong He and Hang Zhang and R. Manmatha and Mu Li and Alexander Smola},
year={2020},
eprint={2004.14960},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@misc{lazy_label,
title={A multi-task U-net for segmentation with lazy labels},
author={Rihuan Ke and Aurélie Bugeau and Nicolas Papadakis and Peter Schuetz and Carola-Bibiane Schönlieb},
year={2019},
eprint={1906.12177},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@INPROCEEDINGS{lp_2010,
author={V. {Badrinarayanan} and F. {Galasso} and R. {Cipolla}},
booktitle={2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition},
title={Label propagation in video sequences},
year={2010},
volume={},
number={},
pages={3265-3272},}
@InProceedings{lp_iccvw,
author = {Budvytis, I. and Sauer, P. and Roddick, T. and Breen, K. and Cipolla, R.},
title = {Large Scale Labelled Video Data Augmentation for Semantic Segmentation in Driving Scenarios},
booktitle = {5th Workshop on Computer Vision for Road Scene Understanding and Autonomous Driving in IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2017}
}
@article{lp_2013,
author = {Vijay Badrinarayanan and Ignas Budvytis and Roberto Cipolla},
title = {Semi-Supervised Video Segmentation Using Tree Structured Graphical Models},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
volume = {35},
number = {11},
pages = {2751--2764},
year = {2013}
}
@inproceedings{lp_eccv,
title = "Can ground truth label propagation from video help semantic segmentation?",
year = "2016",
month = "1",
day = "1",
doi = "10.1007/978-3-319-49409-8_66",
language = "English",
isbn = "9783319494081",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer",
pages = "804--820",
editor = "Gang Hua and Herve Jegou",
booktitle = "Computer Vision – ECCV 2016 Workshops, Proceedings",
}
@inproceedings{lp_2006,
added-at = {2006-06-16T10:34:37.000+0200},
author = {Zhu, Xiaojin and Ghahramani, Zoubin},
biburl = {https://www.bibsonomy.org/bibtex/25ddd451b8facd00d9493358a3db9b733/ldietz},
citeulike-article-id = {310457},
interhash = {b45f08fc36ee3a972a246ac1716aab15},
intrahash = {5ddd451b8facd00d9493358a3db9b733},
keywords = {clustering contraint},
priority = {4},
timestamp = {2006-06-16T10:34:37.000+0200},
title = {Learning from Labeled and Unlabeled Data with
Label Propagation},
url = {http://www.scholar.google.com/url?sa=U\&q=http://www.cs.cmu.edu/~zhuxj/pub/propagate.ps.gz},
year = 2002
}
@incollection{gal_main,
title = {What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?},
author = {Kendall, Alex and Gal, Yarin},
booktitle = {Advances in Neural Information Processing Systems 30},
editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
pages = {5574--5584},
year = {2017},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7141-what-uncertainties-do-we-need-in-bayesian-deep-learning-for-computer-vision.pdf}
}
@incollection{uncer_label_1,
title = {Correlated Uncertainty for Learning Dense Correspondences from Noisy Labels},
author = {Neverova, Natalia and Novotny, David and Vedaldi, Andrea},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {920--928},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/8378-correlated-uncertainty-for-learning-dense-correspondences-from-noisy-labels.pdf}
}
@inproceedings{uncer_label_2,
author = {Sungjoon Choi and
Kyungjae Lee and
Sungbin Lim and
Songhwai Oh},
title = {Uncertainty-Aware Learning from Demonstration Using Mixture Density
Networks with Sampling-Free Variance Modeling},
booktitle = {2018 {IEEE} International Conference on Robotics and Automation, {ICRA}
2018, Brisbane, Australia, May 21-25, 2018},
pages = {6915--6922},
publisher = {{IEEE}},
year = {2018},
url = {https://doi.org/10.1109/ICRA.2018.8462978},
doi = {10.1109/ICRA.2018.8462978},
timestamp = {Wed, 16 Oct 2019 14:14:51 +0200},
biburl = {https://dblp.org/rec/conf/icra/ChoiLLO18.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@incollection{uncer_nips_2,
title = {Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections},
author = {Yehezkel Rohekar, Raanan and Gurwicz, Yaniv and Nisimov, Shami and Novik, Gal},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {4244--4254},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/8677-modeling-uncertainty-by-learning-a-hierarchy-of-deep-neural-connections.pdf}
}
@incollection{uncer_nips_3,
title = {On Mixup Training: Improved Calibration and Predictive Uncertainty for Deep Neural Networks},
author = {Thulasidasan, Sunil and Chennupati, Gopinath and Bilmes, Jeff A and Bhattacharya, Tanmoy and Michalak, Sarah},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {13888--13899},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/9540-on-mixup-training-improved-calibration-and-predictive-uncertainty-for-deep-neural-networks.pdf}
}
@INPROCEEDINGS{fcn_cvpr,
author={J. {Long} and E. {Shelhamer} and T. {Darrell}},
booktitle={2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
title={Fully convolutional networks for semantic segmentation},
year={2015},
volume={},
number={},
pages={3431-3440},}
@misc{semi_sup_depth,
title={Semi-supervised semantic segmentation needs strong, high-dimensional perturbations},
author={Geoff French and Timo Aila and Samuli Laine and Michal Mackiewicz and Graham Finlayson},
year={2020},
url={https://openreview.net/forum?id=B1eBoJStwr}
}
@inproceedings{semi_sup_depth,
title={Semantically-Guided Representation Learning for Self-Supervised Monocular Depth},
author={Vitor Guizilini and Rui Hou and Jie Li and Rares Ambrus and Adrien Gaidon},
booktitle={International Conference on Learning Representations},
year={2020},
url={https://openreview.net/forum?id=ByxT7TNFvH}
}
@InProceedings{multi_domain_seg,
title = {Multi-source Domain Adaptation for Semantic Segmentation},
author = {Zhao, Sicheng and Li, Bo and Yue, Xiangyu and Gu, Yang and Xu, Pengfei and Tan, Hu, Runbo and Chai, Hua and Keutzer, Kurt},
booktitle = {Advances in Neural Information Processing Systems},
year = {2019}
}
@InProceedings{domain_seg_1,
author = {Zhang, Yang and David, Philip and Gong, Boqing},
title = {Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}
@InProceedings{domain_seg_2,
author = {Zou, Yang and Yu, Zhiding and Vijaya Kumar, B.V.K. and Wang, Jinsong},
title = {Unsupervised Domain Adaptation for Semantic Segmentation via Class-Balanced Self-Training},
booktitle = {The European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}
@article{domain_seg_3,
title={BUDA: Boundless Unsupervised Domain Adaptation in Semantic Segmentation},
author={Bucher, Maxime and Vu, Tuan-Hung and Cord, Mathieu and P{\'e}rez, Patrick},
booktitle={Arxiv},
year={2020}
}
@InProceedings{non_deep_sem_seg,
author="Carreira, Jo{\~a}o
and Caseiro, Rui
and Batista, Jorge
and Sminchisescu, Cristian",
editor="Fitzgibbon, Andrew
and Lazebnik, Svetlana
and Perona, Pietro
and Sato, Yoichi
and Schmid, Cordelia",
title="Semantic Segmentation with Second-Order Pooling",
booktitle="Computer Vision -- ECCV 2012",
year="2012",
publisher="Springer Berlin Heidelberg",
address="Berlin, Heidelberg",
pages="430--443",
}
@INPROCEEDINGS{rcnn_1,
author={R. {Girshick} and J. {Donahue} and T. {Darrell} and J. {Malik}},
booktitle={2014 IEEE Conference on Computer Vision and Pattern Recognition},
title={Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation},
year={2014},
volume={},
number={},
pages={580-587},}
@INPROCEEDINGS{non_deep_sem_seg_2,
author={S. {Fidler} and R. {Mottaghi} and A. {Yuille} and R. {Urtasun}},
booktitle={2013 IEEE Conference on Computer Vision and Pattern Recognition},
title={Bottom-Up Segmentation for Top-Down Detection},
year={2013},
volume={},
number={},
pages={3294-3301},}
@inproceedings{pspnet,
title={Pyramid Scene Parsing Network},
author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
booktitle={CVPR},
year={2017}
}
@inproceedings{auto_deeplab,
author = {Chenxi Liu and
Liang{-}Chieh Chen and
Florian Schroff and
Hartwig Adam and
Wei Hua and
Alan L. Yuille and
Fei{-}Fei Li},
title = {Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic
Image Segmentation},
booktitle = {{IEEE} Conference on Computer Vision and Pattern Recognition, {CVPR}
2019, Long Beach, CA, USA, June 16-20, 2019},
pages = {82--92},
publisher = {Computer Vision Foundation / {IEEE}},
year = {2019},
url = {http://openaccess.thecvf.com/content\_CVPR\_2019/html/Liu\_Auto-DeepLab\_Hierarchical\_Neural\_Architecture\_Search\_for\_Semantic\_Image\_Segmentation\_CVPR\_2019\_paper.html},
doi = {10.1109/CVPR.2019.00017},
timestamp = {Mon, 20 Jan 2020 15:36:04 +0100},
biburl = {https://dblp.org/rec/conf/cvpr/LiuCSAHY019.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{deeplab_v2,
author = {Liang{-}Chieh Chen and
George Papandreou and
Florian Schroff and
Hartwig Adam},
title = {Rethinking Atrous Convolution for Semantic Image Segmentation},
journal = {CoRR},
volume = {abs/1706.05587},
year = {2017},
url = {http://arxiv.org/abs/1706.05587},
archivePrefix = {arXiv},
eprint = {1706.05587},
timestamp = {Mon, 13 Aug 2018 16:48:07 +0200},
biburl = {https://dblp.org/rec/journals/corr/ChenPSA17.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{panoptic_deeplab,
author = {Bowen Cheng and
Maxwell D. Collins and
Yukun Zhu and
Ting Liu and
Thomas S. Huang and
Hartwig Adam and
Liang{-}Chieh Chen},
title = {Panoptic-DeepLab: {A} Simple, Strong, and Fast Baseline for Bottom-Up
Panoptic Segmentation},
journal = {CoRR},
volume = {abs/1911.10194},
year = {2019},
url = {http://arxiv.org/abs/1911.10194},
archivePrefix = {arXiv},
eprint = {1911.10194},
timestamp = {Tue, 03 Dec 2019 14:15:54 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-1911-10194.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@inproceedings{unet,
added-at = {2020-04-07T14:51:49.000+0200},
address = {Cham},
author = {Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
biburl = {https://www.bibsonomy.org/bibtex/2c100345d7fcc0a68ee3e6aa2bf7f305d/tobias.koopmann},
booktitle = {Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2015},
editor = {Navab, Nassir and Hornegger, Joachim and Wells, William M. and Frangi, Alejandro F.},
interhash = {9158de16b2caff7458df054dc6fc2748},
intrahash = {c100345d7fcc0a68ee3e6aa2bf7f305d},
isbn = {978-3-319-24574-4},
keywords = {reserved seminar thema thema:image},
pages = {234--241},
publisher = {Springer International Publishing},
timestamp = {2020-04-09T09:42:50.000+0200},
title = {U-Net: Convolutional Networks for Biomedical Image Segmentation},
year = 2015
}
@inproceedings{fast_scnn,
author = {Rudra P. K. Poudel and
Stephan Liwicki and
Roberto Cipolla},
title = {Fast-SCNN: Fast Semantic Segmentation Network},
booktitle = {30th British Machine Vision Conference 2019, {BMVC} 2019, Cardiff,
UK, September 9-12, 2019},
pages = {289},
publisher = {{BMVA} Press},
year = {2019},
url = {https://bmvc2019.org/wp-content/uploads/papers/0959-paper.pdf},
timestamp = {Tue, 21 Apr 2020 23:13:25 +0200},
biburl = {https://dblp.org/rec/conf/bmvc/PoudelLC19.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@misc{es_net,
title={ESNet: An Efficient Symmetric Network for Real-time Semantic Segmentation},
author={Yu Wang and Quan Zhou and Xiaofu Wu},
year={2019},
eprint={1906.09826},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@inbook{sdc_net,
author = {Reda, Fitsum and Liu, Guilin and Shih, Kevin and Kirby, Robert and Barker, Jon and Tarjan, David and Tao, Andrew and Catanzaro, Bryan},
year = {2018},
month = {09},
pages = {747-763},
title = {SDC-Net: Video Prediction Using Spatially-Displaced Convolution: 15th European Conference, Munich, Germany, September 8–14, 2018, Proceedings, Part VII},
isbn = {978-3-030-01233-5},
doi = {10.1007/978-3-030-01234-2_44}
}
@InProceedings{future_seg,
author = {Luc, Pauline and Couprie, Camille and LeCun, Yann and Verbeek, Jakob},
title = {Predicting Future Instance Segmentation by Forecasting Convolutional Features},
booktitle = {The European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}
@ARTICLE{seg_embed,
author={C. {Wu} and H. {Cheng} and S. {Li} and H. {Li} and Y. {Chen}},
journal={IET Cyber-Physical Systems: Theory Applications},
title={ApesNet: A pixel-wise efficient segmentation network for embedded devices},
year={2016},
volume={1},
number={1},
pages={78-85},}
@inproceedings{sem_warp,
author = {Gadde, Raghudeep and Jampani, Varun and Gehler, Peter V.},
title = {Semantic Video CNNs Through Representation Warping},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {Oct},
year = {2017}
}
@inproceedings{feelvos2019,
title={FEELVOS: Fast End-to-End Embedding Learning for Video Object Segmentation},
author={Paul Voigtlaender and Yuning Chai and Florian Schroff and Hartwig Adam and Bastian Leibe and Liang-Chieh Chen},
booktitle={CVPR},
year={2019}
}
@inproceedings{CVPR2019_CycleTime,
Author = {Xiaolong Wang and Allan Jabri and Alexei A. Efros},
Title = {Learning Correspondence from the Cycle-Consistency of Time},
Booktitle = {CVPR},
Year = {2019},
}
@InProceedings{cycle_vid_interp,
author = {Reda, Fitsum A. and Sun, Deqing and Dundar, Aysegul and Shoeybi, Mohammad and Liu, Guilin and Shih, Kevin J. and Tao, Andrew and Kautz, Jan and Catanzaro, Bryan},
title = {Unsupervised Video Interpolation Using Cycle Consistency},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {October},
year = {2019}
}
@inproceedings{pix2pix,
title={High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs},
author={Ting-Chun Wang and Ming-Yu Liu and Jun-Yan Zhu and Andrew Tao and Jan Kautz and Bryan Catanzaro},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2018}
}
@inproceedings{spades,
title={Semantic Image Synthesis with Spatially-Adaptive Normalization},
author={Park, Taesung and Liu, Ming-Yu and Wang, Ting-Chun and Zhu, Jun-Yan},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2019}
}
@article{noisy_memory,
added-at = {2019-10-18T14:23:39.000+0200},
author = {Zhang, Chiyuan and Bengio, Samy and Hardt, Moritz and Recht, Benjamin and Vinyals, Oriol},
biburl = {https://www.bibsonomy.org/bibtex/2570f7892caafef02eaa010686f893b3f/kirk86},
description = {[1611.03530] Understanding deep learning requires rethinking generalization},
interhash = {7f151ed8acacf7b68d2e74f2671111f4},
intrahash = {570f7892caafef02eaa010686f893b3f},
keywords = {approximate deep-learning generalization readings theory},
note = {cite arxiv:1611.03530Comment: Published in ICLR 2017},
timestamp = {2019-10-18T14:23:39.000+0200},
title = {Understanding deep learning requires rethinking generalization},
url = {http://arxiv.org/abs/1611.03530},
year = 2016
}
@article{noisy_self,
title={Self-training with Noisy Student improves ImageNet classification},
author={Xie, Qizhe and Hovy, Eduard and Luong, Minh-Thang and Le, Quoc V},
journal={arXiv preprint arXiv:1911.04252},
year={2019}
}
@incollection{pseudo_nips_1,
title = {Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation},
author = {Zhang, Qiming and Zhang, Jing and Liu, Wei and Tao, Dacheng},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {435--445},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/8335-category-anchor-guided-unsupervised-domain-adaptation-for-semantic-segmentation.pdf}
}
@incollection{domain_seg_nips_1,
title = {Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation},
author = {Zhang, Qiming and Zhang, Jing and Liu, Wei and Tao, Dacheng},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {435--445},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/8335-category-anchor-guided-unsupervised-domain-adaptation-for-semantic-segmentation.pdf}
}
@article{gated_iccv2019,
title={Gated-SCNN: Gated Shape CNNs for Semantic Segmentation},
author={Takikawa, Towaki and Acuna, David and Jampani, Varun and Fidler, Sanja},
journal={ICCV},
year={2019}
}
@inproceedings{gal_multitask,
title={Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics},
author={Kendall, Alex and Gal, Yarin and Cipolla, Roberto},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition ({CVPR})},
year={2018}
}
@inproceedings{optuna_2019,
title={Optuna: A Next-generation Hyperparameter Optimization Framework},
author={Akiba, Takuya and Sano, Shotaro and Yanase, Toshihiko and Ohta, Takeru and Koyama, Masanori},
booktitle={Proceedings of the 25rd {ACM} {SIGKDD} International Conference on Knowledge Discovery and Data Mining},
year={2019}
}
@misc{alex2019big,
title={Big Transfer (BiT): General Visual Representation Learning},
author={Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Joan Puigcerver and Jessica Yung and Sylvain Gelly and Neil Houlsby},
year={2019},
eprint={1912.11370},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
@InProceedings{mapillary,
title= {The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes},
author= {Neuhold, Gerhard and Ollmann, Tobias and Rota Bul\`o, Samuel and Kontschieder, Peter},
booktitle={International Conference on Computer Vision (ICCV)},
year= {2017},
url= {https://www.mapillary.com/dataset/vistas}
}
@InProceedings{deep_v3,
author = {Chen, Liang-Chieh and Zhu, Yukun and Papandreou, George and Schroff, Florian and Adam, Hartwig},
title = {Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
booktitle = {The European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}
@InProceedings{resnext,
author = {Xie, Saining and Girshick, Ross and Dollar, Piotr and Tu, Zhuowen and He, Kaiming},
title = {Aggregated Residual Transformations for Deep Neural Networks},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {July},
year = {2017}
}
%%% -*-BibTeX-*-
@article{wider_res38,
author = {Zifeng Wu and Chunhua Shen and Anton {van den Hengel}},
title = {Wider or Deeper: Revisiting the {ResNet} Model for Visual Recognition},
journal = {Pattern Recognition},
year = {2019},
eprint = {1611.10080},
venue = {PR},
}
@inproceedings{Yang2018DenseASPP,
title={{DenseASPP for Semantic Segmentation in Street Scenes}},
author={Maoke Yang and Kun Yu and Chi Zhang and Zhiwei Li and Kuiyuan Yang},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2018}
}
@InProceedings{Cheng2019SPGNet,
author = {Cheng, Bowen and Chen, Liang-Chieh and Wei, Yunchao and Zhu, Yukun and Huang, Zilong and Xiong, Jinjun and Huang, Thomas S. and Hwu, Wen-Mei and Shi, Honghui},
title = {{SPGNet: Semantic Prediction Guidance for Scene Parsing}},
booktitle = { IEEE International Conference on Computer Vision (ICCV)},
year = {2019}
}
@InProceedings{Fu2019ACNet,
author = {Fu, Jun and Liu, Jing and Wang, Yuhang and Li, Yong and Bao, Yongjun and Tang, Jinhui and Lu, Hanqing},
title = {{Adaptive Context Network for Scene Parsing}},
booktitle = { IEEE International Conference on Computer Vision (ICCV)},
year = {2019}
}
@InProceedings{Li2019EMANet,
author = {Li, Xia and Zhong, Zhisheng and Wu, Jianlong and Yang, Yibo and Lin, Zhouchen and Liu, Hong},
title = {{Expectation-Maximization Attention Networks for Semantic Segmentation}},
booktitle = { IEEE International Conference on Computer Vision (ICCV)},
year = {2019}
}
@article{Sun2019HRNet,
title={{High-Resolution Representations for Labeling Pixels and Regions}},
author={Ke Sun and Yang Zhao and Borui Jiang and Tianheng Cheng and Bin Xiao and Dong Liu and Yadong Mu and Xinggang Wang and Wenyu Liu and Jingdong Wang},
journal={arXiv preprint arXiv:1904.04514},
year={2019}
}
@inproceedings{Fu2018DANet,
title={{Dual Attention Network for Scene Segmentation}},
author={Jun Fu and Jing Liu and Haijie Tian and Yong Li and Yongjun Bao and Zhiwei Fang and Hanqing Lu},
booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019}
}
@inproceedings{benenson2019large,
title={Large-scale interactive object segmentation with human annotators},
author={Benenson, Rodrigo and Popov, Stefan and Ferrari, Vittorio},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={11700--11709},
year={2019}
}
@article{kuznetsova2018open,
title={The open images dataset v4: Unified image classification, object detection, and visual relationship detection at scale},
author={Kuznetsova, Alina and Rom, Hassan and Alldrin, Neil and Uijlings, Jasper and Krasin, Ivan and Pont-Tuset, Jordi and Kamali, Shahab and Popov, Stefan and Malloci, Matteo and Duerig, Tom and others},
journal={arXiv preprint arXiv:1811.00982},
year={2018}
}