-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
DBotTrainClustering.py
1004 lines (872 loc) · 42.7 KB
/
DBotTrainClustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import demistomock as demisto
from CommonServerPython import *
from CommonServerUserPython import *
import pandas as pd
import numpy as np
import collections
import dill as pickle
import builtins
from sklearn.pipeline import Pipeline
from sklearn.compose import ColumnTransformer
from sklearn import cluster
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.manifold import TSNE
import hdbscan
from datetime import datetime
from typing import Type, Tuple, Dict, List, Union
import math
GENERAL_MESSAGE_RESULTS = "#### - We succeeded to group **%s incidents into %s groups**.\n #### - The grouping was based on " \
"the **%s** field(s).\n #### - Each group name is based on the majority value of the **%s** field in " \
"the group.\n #### - For %s incidents, we didn’t find any matching.\n" \
" #### - Model was trained on **%s**.\n"
MESSAGE_NO_INCIDENT_FETCHED = "- 0 incidents fetched with these exact match for the given dates."
MESSAGE_WARNING_TRUNCATED = "- Incidents fetched have been truncated to %s. please either enlarge the time period " \
"or increase the limit argument to more than %s."
MESSAGE_CLUSTERING_NOT_VALID = "Clustering cannot be created with this dataset"
MESSAGE_INCORRECT_FIELD = "- %s field(s) don't/doesn't exist within the fetched incidents."
MESSAGE_INVALID_FIELD = "- %s field(s) has/have too many missing values and won't be used in the model."
MESSAGE_NO_FIELD_NAME_OR_CLUSTERING = "- Empty or incorrect fieldsForClustering " \
"for training OR fieldForClusterName is incorrect."
PREFIXES_TO_REMOVE = ['incident.']
REGEX_DATE_PATTERN = [re.compile(r"^(\d{4}-\d{2}-\d{2})T(\d{2}:\d{2}:\d{2})Z"), # guardrails-disable-line
re.compile(r"(\d{4}-\d{2}-\d{2})T(\d{2}:\d{2}:\d{2}).*")] # guardrails-disable-line
REPLACE_COMMAND_LINE = {"=": " = ", "\\": "/", "[": "", "]": "", '"': "", "'": "", }
TFIDF_PARAMS = {'max_features': 500, 'ngram_range': (2, 4)}
HDBSCAN_PARAMS = {
'algorithm': 'best',
'n_jobs': -1,
'prediction_data': True
}
FAMILY_COLUMN_NAME = 'label'
UNKNOWN_MODEL_TYPE = 'UNKNOWN_MODEL_TYPE'
MESSAGE_ERROR_MESSAGE = 'Model cannot be loaded'
CLUSTERING_STEP_PIPELINE = 'clustering'
PREPROCESSOR_STEP_PIPELINE = 'preprocessor'
PALETTE_COLOR = ['0048BA', '#B0BF1A ', '#7CB9E8 ', '#B284BE ', '#E52B50', '#FFBF00', '#665D1E', '#8DB600',
'#D0FF14']
class Clustering(object):
"""
Class to build a clustering model.
"""
def __init__(self, params, model_name='hdbscan'):
"""
Instiantiate class object for clustering
"""
self.model_name = model_name
self.model_glo = None
self.model = None
# Data
self.raw_data = None # type: Union[Dict, None]
self.data = None
self.label = None
# Results
self.clusters = {}
self.number_clusters = None
self.results = None
# control
self.TSNE_ = False
self.centers = {}
self.centers_2d = {}
self.create_model(parameters=params)
@classmethod
def hdbscan(cls, params):
return cls(params, 'hdbscan')
@classmethod
def kmeans(cls, params):
return cls(params, 'KMeans')
@classmethod
def dbscan(cls, params):
return cls(params, 'DBSCAN')
def create_model(self, parameters={}):
""" Create a new model.
This function takes in parameter a dictionnary.
The keys of this dictionnary should comply with the Scikit Learn
naming.
"""
if self.model_name == "DBSCAN":
self.model = cluster.DBSCAN()
elif self.model_name == "KMeans":
self.model = cluster.KMeans()
elif self.model_name == "hdbscan":
self.model_glo = hdbscan
self.model = self.model_glo.HDBSCAN()
for key, value in parameters.items():
setattr(self.model, key, value)
return
def get_data(self, X: np.ndarray, y: pd.DataFrame):
"""
Load vector of feature X and label y
:param X: vector of feature - np.ndarray
:param y: vector of label - pd.DataFrame
:return:
"""
X = pd.DataFrame(X, index=y.index)
self.raw_data = pd.DataFrame(X).join(y, how='right')
self.data = X
self.label = y
def fit(self, X: np.ndarray, y: pd.DataFrame = None):
"""
Fit the model with the self.data set.
The self.data set should be a numpy.array
:param X: vector of feature - np.ndarray
:param y: vector of label - pd.DataFrame
:return:
"""
self.get_data(X, y)
if hasattr(self.model, 'fit_predict'):
self.results = self.model.fit_predict(X) # type: ignore
else:
self.model.fit(X) # type: ignore
if hasattr(self.model, 'labels_'):
self.results = self.model.labels_.astype(np.int) # type: ignore
else:
self.results = self.model.predict(X) # type: ignore
self.number_clusters = len(set(self.results[self.results >= 0]))
return
def reduce_dimension(self, dimension=2):
"""
Use TSNE technique to reduce dimension
:param dimension:
:return:
"""
if not self.TSNE_:
tsne = TSNE(n_jobs=-1, n_components=dimension, learning_rate=1000)
self.data_2d = tsne.fit_transform(pd.DataFrame(self.centers).T)
for coordinates, center in zip(self.data_2d, pd.DataFrame(self.centers).T.index):
self.centers_2d[center] = coordinates
self.TSNE_ = True
def compute_centers(self):
"""
Compute center for each cluster
:return: None
"""
for cluster_ in range(self.number_clusters): # type: ignore
center = np.mean(self.data[self.model.labels_ == cluster_], axis=0) # type: ignore
if center.isnull().values.any(): # type: ignore
self.centers[cluster_] = center.fillna(0) # type: ignore
else:
self.centers[cluster_] = center
class PostProcessing(object):
"""
Class to analyze the clustering
"""
def __init__(self, clustering: Type[Clustering], threshold: float, generic_cluster_name: bool):
"""
Instantiate class object for visualization
:param clustering: Object Clustering
:param threshold: Threshold for the cluster homogeneity
:param generic_cluster_name: Boolean if cluster don't have name and needs generic naming
:return: Instantiate class object for visualization
"""
self.clustering = clustering # type: Type[Clustering]
self.threshold = threshold # type: float
self.generic_cluster_name = generic_cluster_name
self.stats = {} # type: ignore
self.statistics()
self.compute_dist()
self.date_training = datetime.now().strftime("%m/%d/%Y %H:%M:%S")
self.summary = None # type: ignore
self.global_msg = None # type: ignore
self.json = None # type: ignore
def statistics(self):
"""
Compute statistics of the clusters
"""
# plot_silhouette = self.com_silhouette()
self.stats['General'] = {}
self.stats['General']['Nb sample'] = self.clustering.raw_data.shape[0] # type: ignore
self.stats['General']['Nb cluster'] = self.clustering.number_clusters
self.stats['General']['min_samples'] = self.clustering.model.min_samples # type: ignore
self.stats['General']['min_cluster_size'] = self.clustering.model.min_cluster_size # type: ignore
for number_cluster in range(-1, self.clustering.number_clusters): # type: ignore
self.stats[number_cluster] = {}
self.stats[number_cluster]['number_samples'] = sum(
self.clustering.model.labels_ == number_cluster) # type: ignore
ind = np.where(self.clustering.model.labels_ == number_cluster)[0] # type: ignore
selected_data = [x for x in self.clustering.raw_data.iloc[ind][FAMILY_COLUMN_NAME]] # type: ignore
counter = collections.Counter(selected_data)
total = sum(dict(counter).values(), 0.0)
dist = {k: v * 100 / total for k, v in counter.items()}
dist = dict((k, v) for k, v in dist.items() if v >= 1)
self.stats[number_cluster]['distribution sample'] = dist
def compute_dist(self):
"""
Compute distribution of sample per cluster (depending of the naming and threshold)
"""
dist_total = {} # type: Dict
duplicate_family = {} # type: ignore
if not self.generic_cluster_name:
for cluster_number in range(-1, self.clustering.number_clusters): # type: ignore
chosen = {k: v for k, v in self.stats[cluster_number]['distribution sample'].items() if
v >= self.threshold * 100}
if not chosen and cluster_number != -1:
continue
total = sum(dict(chosen).values(), 0.0)
dist = {k: v * 100 / total for k, v in chosen.items()}
dist_total[cluster_number] = {}
dist_total[cluster_number]['number_samples'] = sum(
self.clustering.raw_data[ # type: ignore
self.clustering.model.labels_ == cluster_number].label.isin( # type: ignore
list(chosen.keys()))) # type: ignore
dist_total[cluster_number]['distribution'] = dist
cluster_name = ' , '.join([x for x in chosen.keys()])[:15]
if cluster_name in duplicate_family.keys():
new_cluster_name = '%s_%s' % (cluster_name, str(duplicate_family[cluster_name]))
duplicate_family[cluster_name] += 1
else:
new_cluster_name = cluster_name
duplicate_family[cluster_name] = 0
dist_total[cluster_number]['clusterName'] = new_cluster_name
else:
for cluster_number in range(-1, self.clustering.number_clusters): # type: ignore
chosen = self.stats[cluster_number]['distribution sample']
total = sum(dict(chosen).values(), 0.0)
dist = {k: v * 100 / total for k, v in chosen.items()}
dist_total[cluster_number] = {}
dist_total[cluster_number]['distribution'] = dist
dist_total[cluster_number]['number_samples'] = self.stats[cluster_number]['number_samples']
dist_total[cluster_number]['clusterName'] = 'Cluster %s' % str(cluster_number)
self.stats['number_of_clusterized_sample_after_selection'] = sum(dist_total[cluster_number]['number_samples']
for cluster_number in dist_total.keys())
self.selected_clusters = dist_total
def extract_fields_from_args(arg: List[str]) -> List[str]:
"""
Extract field from field with prefixe (like incident.commandline)
:param arg: List of field
:return: List of field without prefix
"""
fields_list = [preprocess_incidents_field(x.strip(), PREFIXES_TO_REMOVE) for x in arg if x]
return list(dict.fromkeys(fields_list))
def preprocess_incidents_field(incidents_field: str, prefix_to_remove: List[str]) -> str:
"""
Remove prefixe from incident fields
:param incidents_field: field
:param prefix_to_remove: prefix_to_remove
:return: field without prefix
"""
incidents_field = incidents_field.strip()
for prefix in prefix_to_remove:
if incidents_field.startswith(prefix):
incidents_field = incidents_field[len(prefix):]
return incidents_field
def get_args(): # type: ignore
"""
Gets argument of this automation
:return: Argument of this automation
"""
fields_for_clustering = demisto.args().get('fieldsForClustering', '').split(',')
fields_for_clustering = extract_fields_from_args(fields_for_clustering)
field_for_cluster_name = demisto.args().get('fieldForClusterName', '').split(',')
field_for_cluster_name = extract_fields_from_args(field_for_cluster_name)
display_fields = demisto.args().get('fieldsToDisplay', '').split(',')
display_fields = extract_fields_from_args(display_fields)
display_fields = list(set(['id', 'created', 'name'] + display_fields))
number_feature_per_field = int(demisto.args().get('numberOfFeaturesPerField'))
analyzer = demisto.args().get('analyzer')
min_homogeneity_cluster = float(demisto.args().get('minHomogeneityCluster'))
from_date = demisto.args().get('fromDate')
to_date = demisto.args().get('toDate')
limit = int(demisto.args().get('limit'))
query = demisto.args().get('query')
incident_type = demisto.args().get('type')
max_percentage_of_missing_value = float(demisto.args().get('maxRatioOfMissingValue'))
min_number_of_incident_in_cluster = int(demisto.args().get('minNumberofIncidentPerCluster'))
model_name = demisto.args().get('modelName')
store_model = demisto.args().get('storeModel', 'False') == 'True'
model_override = demisto.args().get('overrideExistingModel', 'False') == 'True'
debug = demisto.args().get('debug', 'False') == 'True'
force_retrain = demisto.args().get('forceRetrain', 'False') == 'True'
model_expiration = float(demisto.args().get('modelExpiration'))
model_hidden = demisto.args().get('model_hidden', 'False') == 'True'
return fields_for_clustering, field_for_cluster_name, display_fields, from_date, to_date, limit, query, \
incident_type, min_number_of_incident_in_cluster, model_name, store_model, min_homogeneity_cluster, \
model_override, max_percentage_of_missing_value, debug, force_retrain, model_expiration, model_hidden, \
number_feature_per_field, analyzer
def get_all_incidents_for_time_window_and_type(populate_fields: List[str], from_date: str, to_date: str,
query_sup: str, limit: int, incident_type: str): # type: ignore
"""
Get incidents with given parameters and return list of incidents
:param populate_fields: List of field to populate
:param from_date: from_date
:param to_date: to_date
:param query_sup: additional criteria for the query
:param limit: maximum number of incident to fetch
:param incident_type: type of incident to fetch
:return: list of incident
"""
msg = ""
if query_sup:
query = " %s" % query_sup
else:
query = ""
res = demisto.executeCommand('GetIncidentsByQuery', {
'query': query,
'populateFields': ' , '.join(populate_fields),
'fromDate': from_date,
'toDate': to_date,
'limit': str(limit),
'incidentTypes': incident_type
})
if is_error(res):
return_error(res)
incidents = json.loads(res[0]['Contents'])
if len(incidents) == 0:
msg += "%s \n" % MESSAGE_NO_INCIDENT_FETCHED
return None, msg # type: ignore
if len(incidents) == limit:
msg += "%s \n" % MESSAGE_WARNING_TRUNCATED % (str(len(incidents)), str(limit))
return incidents, msg # type: ignore
return incidents, msg # type: ignore
def check_list_of_dict(obj) -> bool: # type: ignore
"""
If object is list of dict
:param obj: any object
:return: boolean if object is list of dict
"""
return bool(obj) and all(isinstance(elem, dict) for elem in obj) # type: ignore
def match_one_regex(string: str, patterns) -> bool: # type: ignore
"""
If string matches one or more from patterns
:param string: string
:param patterns: List of regex pattern
:return:
"""
if not isinstance(string, str):
return False
if len(patterns) == 0:
return False
if len(patterns) == 1:
return bool(patterns[0].match(string))
else:
return match_one_regex(string, patterns[1:]) or bool(patterns[0].match(string))
def recursive_filter(item, regex_patterns: List, *fieldsToRemove): # type: ignore
"""
:param item: Dict of list of Dict
:param regex_patterns: List of regex pattern to remove from the dict
:param fieldsToRemove: values to remove from the object
:return: Dict or List of Dict without unwanted values or regex pattern
"""
if isinstance(item, list):
return [recursive_filter(entry, regex_patterns, *fieldsToRemove) for entry in item if
entry not in fieldsToRemove]
if isinstance(item, dict):
result = {}
for key, value in item.items():
value = recursive_filter(value, regex_patterns, *fieldsToRemove)
if key not in fieldsToRemove and value not in fieldsToRemove and (
not match_one_regex(value, regex_patterns)):
result[key] = value
return result
return item
def normalize_global(obj):
if isinstance(obj, float) or not obj:
return " "
if check_list_of_dict(obj):
obj = {k: v for k, v in enumerate(obj)} # type: ignore
return normalize_json(obj)
if isinstance(obj, dict):
return normalize_json(obj)
if isinstance(obj, str) or isinstance(obj, list):
return normalize_command_line(obj)
def normalize_json(obj) -> str: # type: ignore
"""
Normalize json from removing unwanted regex pattern or stop word
:param obj:Dumps of a json or dict
:return:
"""
my_dict = recursive_filter(obj, REGEX_DATE_PATTERN, "None", "N/A", None, "")
extracted_values = [x if isinstance(x, str) else str(x) for x in json_extract(my_dict)]
my_string = ' '.join(extracted_values) # json.dumps(my_dict)
pattern = re.compile(r'([^\s\w]|_)+') # guardrails-disable-line
my_string = pattern.sub(" ", my_string)
my_string = my_string.lower()
return my_string
def json_extract(obj):
"""Recursively fetch values from nested JSON."""
arr = [] # type: ignore
def extract(obj, arr):
"""Recursively search for values of key in JSON tree."""
if isinstance(obj, dict):
for k, v in obj.items():
if isinstance(v, (dict, list)):
extract(v, arr)
else:
arr.append(v)
elif isinstance(obj, list):
for item in obj:
extract(item, arr)
return arr
values = extract(obj, arr)
return values
def normalize_command_line(command) -> str:
"""
Normalize command line
:param command: command line
:return: Normalized command line
"""
if command and isinstance(command, list):
command = ' '.join(set(command))
if command and isinstance(command, str):
my_string = command.lower()
my_string = "".join([REPLACE_COMMAND_LINE.get(c, c) for c in my_string])
my_string = my_string.strip()
return my_string
else:
return ''
class Tfidf(BaseEstimator, TransformerMixin):
"""
TFIDF transformer
"""
def __init__(self, normalize_function):
"""
:param model_params: parameters of TFIDF
:param normalize_function: Normalize function to apply on each sample of the corpus before the vectorization
"""
self.normalize_function = normalize_function
self.vec = TfidfVectorizer(**TFIDF_PARAMS)
def fit(self, x, y=None):
"""
Fit TFIDF transformer
:param x: incident on which we want to fit the transfomer
:return: self
"""
feature_name = x.columns[0]
if self.normalize_function:
x = x[feature_name].apply(self.normalize_function)
self.vec.fit(x)
return self
def transform(self, x):
"""
Transform x with the trained vectorizer
:param x: DataFrame or np.array
:return:
"""
feature_name = x.columns[0]
if self.normalize_function:
x = x[feature_name].apply(self.normalize_function)
else:
x = x[feature_name]
return self.vec.transform(x).toarray()
def store_model_in_demisto(model: Type[PostProcessing], model_name: str, model_override: bool,
model_hidden: bool) -> None:
model_data = base64.b64encode(pickle.dumps(model)).decode('utf-8') # guardrails-disable-line
res = demisto.executeCommand('createMLModel', {'modelData': model_data,
'modelName': model_name,
'modelOverride': model_override,
'modelHidden': model_hidden,
'modelExtraInfo': {
'modelSummaryMarkdown': model.summary_description} # type:ignore
})
if is_error(res):
return_error(get_error(res))
def is_clustering_valid(clustering_model: Type[Clustering]) -> bool:
"""
Criteria to decide if clustering is valid or not (like not enough clusters)
:param clustering_model: Clustering model
:return: Boolean
"""
n_labels = len(set(clustering_model.model.labels_)) # type: ignore
n_samples = len(clustering_model.raw_data) # type: ignore
if not 1 < n_labels < n_samples:
return False
return True
def create_clusters_json(model_processed: Type[PostProcessing], incidents_df: pd.DataFrame, type: str,
display_fields: List[str], fields_for_clustering: List[str]) -> str:
"""
:param model_processed: Postprocessing
:param incidents_df: incidents_df
:param type: type of incident
:return: json with information on the clusters
"""
clustering = model_processed.clustering
data = {} # type: ignore
data['data'] = []
fields_for_clustering_remove_display = [x for x in fields_for_clustering if x not in display_fields]
for cluster_number, coordinates in clustering.centers_2d.items():
if cluster_number not in model_processed.selected_clusters.keys():
continue
d = {'x': float(coordinates[0]),
'y': float(coordinates[1]),
'name': model_processed.selected_clusters[cluster_number]['clusterName'],
'dataType': 'incident',
'color': PALETTE_COLOR[divmod(cluster_number, len(PALETTE_COLOR))[1]],
'pivot': "clusterId:" + str(cluster_number),
'incidents_ids': [x for x in incidents_df[ # type: ignore
clustering.model.labels_ == cluster_number].id.values.tolist()], # type: ignore
'incidents': incidents_df[clustering.model.labels_ == cluster_number] # type: ignore
[display_fields + fields_for_clustering_remove_display].to_json( # type: ignore
orient='records'), # type: ignore
'query': 'type:%s' % type, # type: ignore
'data': [int(model_processed.stats[cluster_number]['number_samples'])]}
data['data'].append(d)
d_outliers = {
'incidents_ids': [x for x in incidents_df[ # type: ignore
clustering.model.labels_ == -1].id.values.tolist()], # type: ignore
'incidents': incidents_df[clustering.model.labels_ == -1][display_fields].to_json( # type: ignore
orient='records'), # type: ignore
}
data['outliers'] = d_outliers
ranges = calculate_range(data)
data['range'] = ranges[0]
data['rangeX'] = ranges[1]
data['rangeY'] = ranges[2]
pretty_json = json.dumps(data, indent=4, sort_keys=True)
return pretty_json
def find_incorrect_field(populate_fields: List[str], incidents_df: pd.DataFrame, global_msg: str):
"""
Check Field that appear in populate_fields but are not in the incidents_df and return message
:param populate_fields: List of fields
:param incidents_df: DataFrame of the incidents with fields in columns
:param global_msg: global_msg
:return: global_msg, incorrect_fields
"""
incorrect_fields = [i for i in populate_fields if i not in incidents_df.columns.tolist()]
if incorrect_fields:
global_msg += "%s \n" % MESSAGE_INCORRECT_FIELD % ' , '.join(
incorrect_fields)
return global_msg, incorrect_fields
def remove_fields_not_in_incident(*args, incorrect_fields: List[str]) -> List[str]:
"""
Return list without field in incorrect_fields
:param args: *List of fields
:param incorrect_fields: fields that we don't want
:return:
"""
return [[x for x in field_type if x not in incorrect_fields] for field_type in args] # type: ignore
def get_results(model_processed: Type[PostProcessing]):
number_of_sample = model_processed.stats["General"]["Nb sample"]
number_clusters_selected = len(model_processed.selected_clusters) - 1
number_of_outliers = number_of_sample - model_processed.stats['number_of_clusterized_sample_after_selection']
return number_of_sample, number_clusters_selected, number_of_outliers
def create_summary(model_processed: Type[PostProcessing], fields_for_clustering: List[str],
field_for_cluster_name: List[str]) -> dict:
"""
Create json with summary of the training
:param model_processed: Postprocessing
:return: JSON with information about the training
"""
clustering = model_processed.clustering
number_of_sample = model_processed.stats["General"]["Nb sample"]
nb_clusterized_after_selection = model_processed.stats['number_of_clusterized_sample_after_selection']
nb_clusters = model_processed.stats["General"]["Nb cluster"]
number_clusters_selected = len(model_processed.selected_clusters) - 1 # type: ignore
number_of_clusterized = sum(clustering.model.labels_ != -1) # type: ignore
percentage_clusters_selected = round(100 * number_clusters_selected / nb_clusters, 0)
percentage_selected_samples = round(100 * (nb_clusterized_after_selection / number_of_sample), 0)
percentage_clusterized_samples = round(100 * (number_of_clusterized / number_of_sample), 0)
summary = {
'Total number of samples ': str(number_of_sample),
'Percentage of clusterized samples after selection (after Phase 1 and Phase 2)': "%s (%s/%s)"
% (
str(percentage_selected_samples),
str(nb_clusterized_after_selection),
str(number_of_sample)),
'Percentage of clusterized samples (after Phase 1)': "%s (%s/%s)" %
(str(percentage_clusterized_samples),
str(number_of_clusterized),
str(number_of_sample)),
'Percentage of cluster selected (Number of high quality groups/Total number of groups)':
"%s (%s/%s)" %
(str(percentage_clusters_selected),
str(number_clusters_selected),
str(nb_clusters)),
'Fields used for training': ' , '.join(fields_for_clustering),
'Fields used for cluster name': field_for_cluster_name[0] if field_for_cluster_name else "",
'Training time': str(model_processed.date_training)
}
return summary
def return_entry_clustering(output_clustering: Dict, tag: str = None) -> None:
"""
Create and return entry with the JSON containing the clusters
:param output_clustering: json with the cluster
:param tag: tag
:return: Return entry to demisto
"""
return_entry = {
"Type": entryTypes["note"],
"ContentsFormat": formats['json'],
"Contents": output_clustering,
"EntryContext": {'DBotTrainClustering': output_clustering},
}
if tag is not None:
return_entry["Tags"] = ['Clustering_{}'.format(tag)]
demisto.results(return_entry)
def wrapped_list(obj: List) -> List:
"""
Wrapped object into a list if not list
:param obj:
:return:
"""
if not isinstance(obj, list):
return [obj]
return obj
def fill_nested_fields(incidents_df: pd.DataFrame, incidents: List, *list_of_field_list: List[str],
keep_unique_value=False) -> \
pd.DataFrame:
"""
Handle nested fields by concatening values for each sub list of the field
:param incidents_df: DataFrame of incidents
:param incidents: List of incident
:param list_of_field_list: field which can be nested. Can be also no nested field and will remain the same
:return: DataFrame with nested field columns updated
"""
for field_type in list_of_field_list:
for field in field_type:
if '.' in field:
if isinstance(incidents, list):
value_list = [wrapped_list(demisto.dt(incident, field)) for incident in incidents]
if not keep_unique_value:
value_list = [' '.join( # type: ignore
set(
list(
filter(lambda x: x not in ['None', None, 'N/A'], x)
)
)
)
for x in value_list]
else:
value_list = [most_frequent(list(filter(lambda x: x not in ['None', None, 'N/A'], x)))
for x in value_list]
else:
value_list = wrapped_list(demisto.dt(incidents, field))
value_list = ' '.join( # type: ignore
set(list(filter(lambda x: x not in ['None', None, 'N/A'], value_list)))) # type: ignore
incidents_df[field] = value_list
return incidents_df
def most_frequent(list_: List):
"""
Return most frequent element of a list if not empty elase return empty string
:param l: list with element
:return: item in list with most occurrence
"""
if not list_:
return ""
else:
return max(set(list_), key=list_.count)
def remove_not_valid_field(fields_for_clustering: List[str], incidents_df: pd.DataFrame, global_msg: str,
max_ratio_of_missing_value: float) -> Tuple[List[str], str]:
"""
Remove fields that are not valid (like too small number of sample)
:param fields_for_clustering: List of field to use for the clustering
:param incidents_df: DataFrame of incidents
:param global_msg: global_msg
:param max_ratio_of_missing_value: max ratio of missing values we accept
:return: List of valid fields, message
"""
missing_values_percentage = incidents_df[fields_for_clustering].applymap(lambda x: x == '').sum(axis=0) / len(
incidents_df)
mask = missing_values_percentage < max_ratio_of_missing_value
valid_field = mask[mask].index.tolist()
invalid_field = mask[~mask].index.tolist()
if invalid_field:
global_msg += "%s \n" % MESSAGE_INVALID_FIELD % ' , '.join(invalid_field)
return valid_field, global_msg
def get_model_data(model_name):
"""
Return model in base 64 and message about the load of the model
:param model_name: model_name
:return:
"""
res_model = demisto.executeCommand("getMLModel", {"modelName": model_name})[0]
if not is_error(res_model):
model_data = res_model['Contents']['modelData']
try:
model_type = res_model['Contents']['model']["type"]["type"]
return model_data, model_type
except Exception:
return model_data, UNKNOWN_MODEL_TYPE
else:
return None, MESSAGE_ERROR_MESSAGE
def is_model_needs_retrain(force_retrain: bool, model_expiration: float, model_name: str):
"""
Return boolean if the model needs to be retrain based on the expiration of the model and force_retrain atgument
:param force_retrain: boolean if the user cho to retrain the model in any case
:param model_expiration: period in hour after which you want to retrain the model
:param model_name: model_name
:return: PostProcessing model, boolean if needs to be retrained
"""
if force_retrain:
return None, True
model_data, model_type = get_model_data(model_name)
if not model_data:
return None, True
else:
model = load_model64(model_data)
model_training_time = pd.to_datetime(model.date_training)
return model, model_training_time < datetime.now() - timedelta(hours=model_expiration)
def load_model64(model_base64: str):
"""
Load model from base64 model
:param model_base64: string base64 model
:return: PostProcessing model
"""
try:
model = pickle.loads(base64.b64decode(model_base64)) # guardrails-disable-line
return model
except pickle.UnpicklingError:
return_error("Model exist but cannot be loaded")
def prepare_data_for_training(generic_cluster_name, incidents_df, field_for_cluster_name):
"""
:param generic_cluster_name: if using generic name or field name given by the user in argument
:param incidents_df: dataframe of incidents
:param field_for_cluster_name: field for cluster name given by the user
:return: labels
"""
if generic_cluster_name:
incidents_df[FAMILY_COLUMN_NAME] = ""
labels = incidents_df[FAMILY_COLUMN_NAME]
else:
labels = incidents_df[field_for_cluster_name].rename(columns={field_for_cluster_name[0]: FAMILY_COLUMN_NAME})
return labels
def transform_names_if_list(incidents_df, field_for_cluster_name):
"""
Check if field_for_cluster_name value are type list and keep the maximun value if this is the case
:param incidents_df: Dataframe of incidents
:param field_for_cluster_name: List with one field that correspong to the name of the cluster
:return: Dataframe of incidents with modification on field_for_cluster_name columns
"""
if field_for_cluster_name and field_for_cluster_name[0] in incidents_df.columns:
incidents_df[field_for_cluster_name[0]] = incidents_df[field_for_cluster_name[0]].apply(
lambda x: most_frequent(x) if isinstance(x, list) else x)
return incidents_df
def keep_high_level_field(incidents_field: List[str]) -> List[str]:
"""
Return list of fields if they are in the first level of the argument - xdralert.commandline will return xdralert
:param incidents_field: list of incident fields
:return: Return list of fields
"""
return [x.split('.')[0] if '.' in x else x for x in incidents_field]
def calculate_range(data):
all_data_size = list(map(lambda x: x['data'][0], data['data']))
all_x = list(map(lambda x: x['x'], data['data']))
all_y = list(map(lambda x: x['y'], data['data']))
max_size = max(all_data_size)
min_size = min(all_data_size)
min_range = max(30, min_size)
max_range = min_range + max(300, max_size - min_size)
return [min_range, max_range], [int(math.ceil(min(all_x))), int(math.ceil(max(all_x)))], \
[int(math.ceil(min(all_y))), int(math.ceil(max(all_y)))]
def main():
builtins.Clustering = Clustering # type: ignore
builtins.PostProcessing = PostProcessing # type: ignore
builtins.Tfidf = Tfidf # type: ignore
global_msg = ""
generic_cluster_name = False
# Get argument of the automation
fields_for_clustering, field_for_cluster_name, display_fields, from_date, to_date, limit, query, incident_type, \
min_number_of_incident_in_cluster, model_name, store_model, min_homogeneity_cluster, model_override, \
max_percentage_of_missing_value, debug, force_retrain, model_expiration, model_hidden, \
number_feature_per_field, analyzer = get_args()
HDBSCAN_PARAMS.update({'min_cluster_size': min_number_of_incident_in_cluster,
'min_samples': min_number_of_incident_in_cluster})
TFIDF_PARAMS.update({'max_features': number_feature_per_field})
TFIDF_PARAMS.update({'analyzer': analyzer})
# Check if need to retrain
model_processed, retrain = is_model_needs_retrain(force_retrain, model_expiration, model_name)
if not retrain:
if debug:
return_outputs(
readable_output=global_msg + tableToMarkdown(
"Summary",
model_processed.summary # pylint: disable=E1101
)
)
data_clusters_json = model_processed.json # pylint: disable=E1101
search_query = demisto.args().get('searchQuery')
if search_query:
data_clusters = json.loads(model_processed.json) # pylint: disable=E1101
filtered_clusters_data = []
for row in data_clusters['data']:
if row['pivot'] in search_query.split(" "):
filtered_clusters_data.append(row)
data_clusters['data'] = filtered_clusters_data
data_clusters_json = json.dumps(data_clusters)
return_entry_clustering(output_clustering=data_clusters_json, tag="trained")
return model_processed, model_processed.json, "" # pylint: disable=E1101
else:
# Check if user gave a field for cluster name - if not use generic cluster name
if not field_for_cluster_name:
generic_cluster_name = True
# Get all the incidents from query, date and field similarity and field family
populate_fields = fields_for_clustering + field_for_cluster_name + display_fields
populate_high_level_fields = keep_high_level_field(populate_fields)
incidents, msg = get_all_incidents_for_time_window_and_type(populate_high_level_fields, from_date, to_date,
query,
# type: ignore
limit, incident_type) # type: ignore
global_msg += "%s \n" % msg
# If no incidents found with those criteria
if not incidents:
demisto.results(global_msg)
return None, {}, global_msg
incidents_df = pd.DataFrame(incidents).fillna('')
incidents_df.index = incidents_df.id
# Fill nested fields with appropriate values
incidents_df = transform_names_if_list(incidents_df, field_for_cluster_name)
incidents_df = fill_nested_fields(incidents_df, incidents, fields_for_clustering)
incidents_df = fill_nested_fields(incidents_df, incidents, field_for_cluster_name, keep_unique_value=True)
# Check Field that appear in populate_fields but are not in the incidents_df and return message
global_msg, incorrect_fields = find_incorrect_field(populate_fields, incidents_df, global_msg)
fields_for_clustering, field_for_cluster_name, display_fields = \
remove_fields_not_in_incident(fields_for_clustering, field_for_cluster_name, display_fields,
incorrect_fields=incorrect_fields)
# Remove fields that are not valid (like too small number of sample)
fields_for_clustering, global_msg = remove_not_valid_field(fields_for_clustering, incidents_df, global_msg,
max_percentage_of_missing_value) # type: ignore
# Case where no field for clustrering or field for cluster name if not empty and incorrect)
if not fields_for_clustering or (not field_for_cluster_name and not generic_cluster_name):
global_msg += "%s \n" % MESSAGE_NO_FIELD_NAME_OR_CLUSTERING
demisto.results(global_msg)
return None, {}, global_msg
# Create data for training
labels = prepare_data_for_training(generic_cluster_name, incidents_df, field_for_cluster_name)
# TFIDF pipeline
tfidf_pipe = Pipeline(steps=[
('tfidf', Tfidf(normalize_function=normalize_global))
])
# preprocessor
transformers_list = [('tfidf' + field, tfidf_pipe, [field]) for field in fields_for_clustering]
preprocessor = ColumnTransformer(
transformers=transformers_list)
# Model pipeline
model = Pipeline(steps=[(PREPROCESSOR_STEP_PIPELINE, preprocessor),
(CLUSTERING_STEP_PIPELINE, Clustering(HDBSCAN_PARAMS))
])
# Fit of the model on incidents_df and labels
model.fit(incidents_df, labels)
# Check is clustering is valid
if not is_clustering_valid(model.named_steps[CLUSTERING_STEP_PIPELINE]):
global_msg += "%s \n" % MESSAGE_CLUSTERING_NOT_VALID
return None, {}, global_msg
# Reduce dimension
model.named_steps[CLUSTERING_STEP_PIPELINE].compute_centers()
model.named_steps[CLUSTERING_STEP_PIPELINE].reduce_dimension()
model_processed = PostProcessing(model.named_steps[CLUSTERING_STEP_PIPELINE], min_homogeneity_cluster,
generic_cluster_name)
# Create summary of the training and assign it the the summary attribute of the model
summary = create_summary(model_processed, fields_for_clustering, field_for_cluster_name)
model_processed.summary = summary
model_processed.global_msg = global_msg
if debug:
return_outputs(readable_output='## Warning \n {}'.format(global_msg) + tableToMarkdown("Summary", summary))
else:
field_clustering = ' , '.join(fields_for_clustering)
field_name = field_for_cluster_name[0] if field_for_cluster_name else ""
number_of_sample, number_clusters_selected, number_of_outliers = get_results(model_processed)
training_date = str(model_processed.date_training)
msg = GENERAL_MESSAGE_RESULTS % (number_of_sample, number_clusters_selected,
field_clustering, field_name, number_of_outliers, training_date)
return_outputs(
readable_output='## General results \n {}'.format(msg) + '## Warning \n {}'.format(global_msg))
model_processed.summary_description = msg
# return Entry and summary
output_clustering_json = create_clusters_json(model_processed, incidents_df, incident_type, display_fields,
fields_for_clustering)
model_processed.json = output_clustering_json
return_entry_clustering(output_clustering=model_processed.json, tag="trained") # type: ignore
if store_model:
store_model_in_demisto(model_processed, model_name, model_override, model_hidden)
return model_processed, output_clustering_json, global_msg