-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
DBotPreprocessTextData.py
502 lines (431 loc) · 19.4 KB
/
DBotPreprocessTextData.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# pylint: disable=no-member
from collections import Counter
from CommonServerUserPython import *
from CommonServerPython import *
from sklearn.feature_extraction.text import TfidfVectorizer
import pickle
import uuid
import spacy
import string
from html.parser import HTMLParser
from html import unescape
from re import compile as _Re
import pandas as pd
from langdetect import detect
from langdetect.lang_detect_exception import LangDetectException
ANY_LANGUAGE = 'Any'
OTHER_LANGUAGE = 'Other'
def hash_word(word, hash_seed):
return str(hash_djb2(word, int(hash_seed)))
CODES_TO_LANGUAGES = {'en': 'English',
'de': 'German',
'fr': 'French',
'es': 'Spanish',
'pt': 'Portuguese',
'it': 'Italian',
'nl': 'Dutch',
}
html_patterns = [
re.compile(r"(?is)<(script|style).*?>.*?(</\1>)"),
re.compile(r"(?s)<!--(.*?)-->[\n]?"),
re.compile(r"(?s)<.*?>"),
re.compile(r" "),
re.compile(r" +")
]
LANGUAGE_KEY = 'language'
def create_text_result(original_text, tokenized_text, original_words_to_tokens, hash_seed=None):
text_result = {
'originalText': original_text,
'tokenizedText': tokenized_text,
'originalWordsToTokens': original_words_to_tokens,
}
if hash_seed is not None:
hash_tokenized_text = ' '.join(hash_word(word, hash_seed) for word in tokenized_text.split())
words_to_hashed_tokens = {word: [hash_word(t, hash_seed) for t in tokens_list] for word, tokens_list in
original_words_to_tokens.items()}
text_result['hashedTokenizedText'] = hash_tokenized_text
text_result['wordsToHashedTokens'] = words_to_hashed_tokens
return text_result
def clean_html_from_text(text):
cleaned = text
for pattern in html_patterns:
cleaned = pattern.sub(" ", cleaned)
return unescape(cleaned).strip()
class Tokenizer:
def __init__(self, clean_html=True, remove_new_lines=True, hash_seed=None, remove_non_english=True,
remove_stop_words=True, remove_punct=True, remove_non_alpha=True, replace_emails=True,
replace_numbers=True, lemma=True, replace_urls=True, language=ANY_LANGUAGE,
tokenization_method='tokenizer'):
self.number_pattern = "NUMBER_PATTERN"
self.url_pattern = "URL_PATTERN"
self.email_pattern = "EMAIL_PATTERN"
self.reserved_tokens = set([self.number_pattern, self.url_pattern, self.email_pattern])
self.clean_html = clean_html
self.remove_new_lines = remove_new_lines
self.hash_seed = hash_seed
self.remove_non_english = remove_non_english
self.remove_stop_words = remove_stop_words
self.remove_punct = remove_punct
self.remove_non_alpha = remove_non_alpha
self.replace_emails = replace_emails
self.replace_urls = replace_urls
self.replace_numbers = replace_numbers
self.lemma = lemma
self.language = language
self.tokenization_method = tokenization_method
self.max_text_length = 10 ** 5
self.nlp = None
self.html_parser = HTMLParser()
self._unicode_chr_splitter = _Re('(?s)((?:[\ud800-\udbff][\udc00-\udfff])|.)').split
self.spacy_count = 0
self.spacy_reset_count = 500
def handle_long_text(self):
return '', ''
def map_indices_to_words(self, text):
original_text_indices_to_words = {}
word_start = 0
while word_start < len(text) and text[word_start].isspace():
word_start += 1
for word in text.split():
for char_idx, char in enumerate(word):
original_text_indices_to_words[word_start + char_idx] = word
# find beginning of next word
word_start += len(word)
while word_start < len(text) and text[word_start].isspace():
word_start += 1
return original_text_indices_to_words
def remove_line_breaks(self, text):
return text.replace("\r", " ").replace("\n", " ")
def remove_multiple_whitespaces(self, text):
return re.sub(r"\s+", " ", text).strip()
def handle_tokenizaion_method(self, text):
if self.tokenization_method == 'tokenizer':
tokens_list, original_words_to_tokens = self.tokenize_text_spacy(text)
else:
tokens_list, original_words_to_tokens = self.tokenize_text_other(text)
tokenized_text = ' '.join(tokens_list).strip()
return tokenized_text, original_words_to_tokens
def tokenize_text_other(self, text):
tokens_list = []
tokenization_method = self.tokenization_method
if tokenization_method == 'byWords':
original_words_to_tokens = {}
for t in text.split():
token_without_punct = ''.join([c for c in t if c not in string.punctuation])
if len(token_without_punct) > 0:
tokens_list.append(token_without_punct)
original_words_to_tokens[token_without_punct] = t
elif tokenization_method == 'byLetters':
for t in text:
tokens_list += [chr for chr in self._unicode_chr_splitter(t) if chr and chr != ' ']
original_words_to_tokens = {c: t for c in tokens_list}
else:
return_error('Unsupported tokenization method: when language is "Other" ({})'.format(tokenization_method))
return tokens_list, original_words_to_tokens
def tokenize_text_spacy(self, text):
if self.nlp is None or self.spacy_count % self.spacy_reset_count == 0:
self.init_spacy_model()
doc = self.nlp(text) # type: ignore
self.spacy_count += 1
original_text_indices_to_words = self.map_indices_to_words(text)
tokens_list = []
original_words_to_tokens = {} # type: ignore
for word in doc:
if word.is_space:
continue
elif self.remove_stop_words and word.is_stop:
continue
elif self.remove_punct and word.is_punct:
continue
elif self.replace_emails and '@' in word.text:
tokens_list.append(self.email_pattern)
elif self.replace_urls and word.like_url:
tokens_list.append(self.url_pattern)
elif self.replace_numbers and (word.like_num or word.pos_ == 'NUM'):
tokens_list.append(self.number_pattern)
elif self.remove_non_alpha and not word.is_alpha:
continue
elif self.remove_non_english and word.text not in self.nlp.vocab: # type: ignore
continue
else:
if self.lemma and word.lemma_ != '-PRON-':
token_to_add = word.lemma_
else:
token_to_add = word.lower_
tokens_list.append(token_to_add)
original_word = original_text_indices_to_words[word.idx]
if original_word not in original_words_to_tokens:
original_words_to_tokens[original_word] = []
original_words_to_tokens[original_word].append(token_to_add)
return tokens_list, original_words_to_tokens
def init_spacy_model(self):
self.nlp = spacy.load('en_core_web_sm', disable=['parser', 'ner', 'textcat'])
def word_tokenize(self, text):
if not isinstance(text, list):
text = [text]
result = []
for t in text:
original_text = t
if self.remove_new_lines:
t = self.remove_line_breaks(t)
if self.clean_html:
t = clean_html_from_text(t)
original_text = t
t = self.remove_multiple_whitespaces(t)
if len(t) < self.max_text_length:
tokenized_text, original_words_to_tokens = self.handle_tokenizaion_method(t)
else:
tokenized_text, original_words_to_tokens = self.handle_long_text()
text_result = create_text_result(original_text, tokenized_text, original_words_to_tokens,
hash_seed=self.hash_seed)
result.append(text_result)
if len(result) == 1:
result = result[0] # type: ignore
return result
# define global parsers
DBOT_TEXT_FIELD = 'dbot_text'
DBOT_PROCESSED_TEXT_FIELD = 'dbot_processed_text'
CONTEXT_KEY = 'DBotPreProcessTextData'
HTML_PATTERNS = [
re.compile(r"(?is)<(script|style).*?>.*?(</\1>)"),
re.compile(r"(?s)<!--(.*?)-->[\n]?"),
re.compile(r"(?s)<.*?>"),
re.compile(r" "),
re.compile(r" +")
]
html_parser = HTMLParser()
tokenizer = None
def read_file(input_data, input_type):
data = [] # type: ignore
if not input_data:
return data
if input_type.endswith("string"):
if 'b64' in input_type:
input_data = base64.b64decode(input_data)
file_content = input_data.decode("utf-8")
else:
file_content = input_data
else:
res = demisto.getFilePath(input_data)
if not res:
return_error("Entry {} not found".format(input_data))
file_path = res['path']
if input_type.startswith('json'):
with open(file_path, 'r') as f:
file_content = f.read()
if input_type.startswith('csv'):
return pd.read_csv(file_path).fillna('').to_dict(orient='records')
elif input_type.startswith('json'):
return json.loads(file_content)
elif input_type.startswith('pickle'):
return pd.read_pickle(file_path, compression=None)
else:
return_error("Unsupported file type %s" % input_type)
def concat_text_fields(data, target_field, text_fields):
for d in data:
text = ''
for fields in text_fields:
for field in fields.strip().split("|"):
field = field.strip()
if "." in field:
value = demisto.dt(d, field)
if type(value) is list and len(value) > 0:
value = value[0]
else:
value = d.get(field) or d.get(field.lower(), '')
if value and isinstance(value, str):
text += value
text += ' '
break
text = text.strip()
d[target_field] = text
return data
def remove_line_breaks(text):
return re.sub(r"\s+", " ", text.replace("\r", " ").replace("\n", " ")).strip()
def clean_text_of_single_text(text, remove_html_tags):
if remove_html_tags:
text = clean_html_from_text(text)
return remove_line_breaks(text)
def clean_text_of_incidents_list(data, source_text_field, remove_html_tags):
for inc in data:
inc[source_text_field] = clean_text_of_single_text(inc[source_text_field], remove_html_tags)
return data
def pre_process_batch(data, source_text_field, target_text_field, pre_process_type, hash_seed):
raw_text_data = [x[source_text_field] for x in data]
tokenized_text_data = []
for raw_text in raw_text_data:
tokenized_text = pre_process_single_text(raw_text, hash_seed, pre_process_type)
if hash_seed is None:
tokenized_text_data.append(tokenized_text['tokenizedText'])
else:
tokenized_text_data.append(tokenized_text['hashedTokenizedText'])
for d, tokenized_text in zip(data, tokenized_text_data):
d[target_text_field] = tokenized_text
return data
def pre_process_single_text(raw_text, hash_seed, pre_process_type):
pre_process_func = PRE_PROCESS_TYPES[pre_process_type]
tokenized_text = pre_process_func(raw_text, hash_seed)
return tokenized_text
def pre_process_tokenizer(text, seed):
global tokenizer
if tokenizer is None:
tokenizer = Tokenizer(tokenization_method=demisto.args()['tokenizationMethod'],
language=demisto.args()['language'], hash_seed=seed)
processed_text = tokenizer.word_tokenize(text)
return processed_text
def pre_process_none(text, seed):
cleaned_text = clean_html_from_text(text)
tokenized_text = text
original_words_to_tokens = {x: x for x in cleaned_text.split()}
return create_text_result(original_text=cleaned_text,
tokenized_text=tokenized_text,
original_words_to_tokens=original_words_to_tokens,
hash_seed=seed)
PRE_PROCESS_TYPES = {
'none': pre_process_none,
'nlp': pre_process_tokenizer,
}
def remove_short_text(data, text_field, target_text_field, remove_short_threshold):
description = ""
before_count = len(data)
data = [x for x in data if len(x[text_field].split(" ")) > remove_short_threshold
and len(x[target_text_field]) > remove_short_threshold]
after_count = len(data)
dropped_count = before_count - after_count
if dropped_count > 0:
description += "Dropped %d samples shorter than %d words" % (dropped_count, remove_short_threshold) + "\n"
return data, description
def remove_foreign_language(data, text_field, language):
description = ""
for inc in data:
is_correct_lang, actual_language = is_text_in_input_language(inc[text_field], language)
inc['is_correct_lang'] = is_correct_lang
inc[LANGUAGE_KEY] = actual_language
filtered_data = [inc for inc in data if inc['is_correct_lang']]
dropped_count = len(data) - len(filtered_data)
if dropped_count > 0:
lang_counter = Counter(inc[LANGUAGE_KEY] for inc in data).most_common()
description += "Dropped %d sample(s) that were detected as being in foreign languages. " % dropped_count
description += 'Found language counts: {}'.format(', '.join(['{}:{}'.format(lang, count) for lang, count
in lang_counter]))
description += "\n"
return filtered_data, description
def is_text_in_input_language(text, input_language):
if input_language in [ANY_LANGUAGE, OTHER_LANGUAGE]:
return True, 'UNK'
if '<html' in text:
text = clean_html_from_text(text)
try:
actual_language = detect(text)
except LangDetectException:
return True, 'UNK'
is_correct_lang = actual_language in CODES_TO_LANGUAGES and CODES_TO_LANGUAGES[actual_language] == input_language
return is_correct_lang, actual_language
def get_tf_idf_similarity_arr(documents):
tfidf = TfidfVectorizer(stop_words="english", min_df=1).fit_transform(documents)
pairwise_similarity = tfidf * tfidf.T
return pairwise_similarity.toarray()
def find_duplicate_indices(texts, dedup_threshold):
similarity_arr = get_tf_idf_similarity_arr(texts)
indices_to_remove = []
for i in range(similarity_arr.shape[0]):
for j in range(similarity_arr.shape[1]):
if j > i and similarity_arr[i][j] > dedup_threshold:
indices_to_remove.append(j)
return set(indices_to_remove)
def remove_duplicate_by_indices(data, duplicate_indices):
description = ""
data = [x for i, x in enumerate(data) if i not in duplicate_indices]
dropped_count = len(duplicate_indices)
if dropped_count > 0:
description += "Dropped %d samples duplicate to other samples" % dropped_count + "\n"
return data, description
def whitelist_dict_fields(data, fields):
fields = [x.strip() for x in fields] + [x.strip().lower() for x in fields]
new_data = []
for d in data:
new_data.append({k: v for k, v in d.items() if k in fields})
return new_data
def main():
text_fields = demisto.args()['textFields'].split(",")
input = demisto.args().get('input')
input_type = demisto.args()['inputType']
hash_seed = int(demisto.args().get('hashSeed')) if demisto.args().get('hashSeed') else None
remove_short_threshold = int(demisto.args().get('removeShortTextThreshold', 1))
de_dup_threshold = float(demisto.args()['dedupThreshold'])
pre_process_type = demisto.args()['preProcessType']
remove_html_tags = demisto.args()['cleanHTML'] == 'true'
whitelist_fields = demisto.args().get('whitelistFields').split(",") if demisto.args().get(
'whitelistFields') else None
language = demisto.args().get('language', ANY_LANGUAGE)
# if input is a snigle string (from DbotPredictPhishingWords):
if input_type == 'string':
input_str = demisto.args().get('input')
input_str = clean_text_of_single_text(input_str, remove_html_tags)
is_correct_lang, actual_language = is_text_in_input_language(input_str, language)
if not is_correct_lang:
return_error("Input text was detected as as being in a different language from {} ('{}' found)."
.format(language, actual_language))
res = pre_process_single_text(raw_text=input_str,
hash_seed=hash_seed, pre_process_type=pre_process_type)
return res
output_original_text_fields = demisto.args().get('outputOriginalTextFields', 'false') == 'true'
description = ""
# read data
data = read_file(input, input_type)
# concat text fields
concat_text_fields(data, DBOT_TEXT_FIELD, text_fields)
description += "Read initial %d samples" % len(data) + "\n"
# clean text
if pre_process_type not in PRE_PROCESS_TYPES:
return_error('Pre-process type {} is not supported'.format(pre_process_type))
# clean html and new lines
data = clean_text_of_incidents_list(data, DBOT_TEXT_FIELD, remove_html_tags)
# filter incidents not in specified languages
data, desc = remove_foreign_language(data, DBOT_TEXT_FIELD, language)
description += desc
# apply tokenizer
data = pre_process_batch(data, DBOT_TEXT_FIELD, DBOT_PROCESSED_TEXT_FIELD, pre_process_type,
hash_seed)
# remove short emails
data, desc = remove_short_text(data, DBOT_TEXT_FIELD, DBOT_PROCESSED_TEXT_FIELD, remove_short_threshold)
description += desc
# remove duplicates
try:
if 0 < de_dup_threshold < 1:
duplicate_indices = find_duplicate_indices([x[DBOT_PROCESSED_TEXT_FIELD] for x in data], de_dup_threshold)
data, desc = remove_duplicate_by_indices(data, duplicate_indices)
description += desc
except Exception:
pass
if output_original_text_fields:
for field in text_fields:
whitelist_fields += [x.strip() for x in field.split('|')]
if whitelist_fields and len(whitelist_fields) > 0:
whitelist_fields.append(DBOT_PROCESSED_TEXT_FIELD)
data = whitelist_dict_fields(data, whitelist_fields)
description += "Done processing: %d samples" % len(data) + "\n"
# output
file_name = str(uuid.uuid4())
output_format = demisto.args()['outputFormat']
if output_format == 'pickle':
data_encoded = pickle.dumps(data, protocol=2)
elif output_format == 'json':
data_encoded = json.dumps(data, default=str) # type: ignore
else:
return_error("Invalid output format: %s" % output_format)
entry = fileResult(file_name, data_encoded)
entry['Contents'] = data
entry['HumanReadable'] = description
entry['EntryContext'] = {
CONTEXT_KEY: {
'Filename': file_name,
'FileFormat': output_format,
'TextField': DBOT_TEXT_FIELD,
'TextFieldProcessed': DBOT_PROCESSED_TEXT_FIELD,
}
}
return entry
if __name__ in ['builtins', '__main__']:
entry = main()
demisto.results(entry)