Skip to content

Latest commit

 

History

History
130 lines (110 loc) · 8.75 KB

README.md

File metadata and controls

130 lines (110 loc) · 8.75 KB

NEMATODE: Light-weight NMT toolkit

Note: Current implementation is outdated and will be brought up to date soon.

Dependencies

  • python >= 3.5.2
  • tensorflow >= 1.9
  • CUDA >= 9.0

Description

NEMATODE is a light-weight neural machine translation toolkit built around the transformer model. As the name suggests, it was originally derived from the Nematus toolkit and eventually deviated from Nematus into a stand-alone project, by adopting the transformer model and a custom data serving pipeline. Many of its components (most notably the transformer implementation) were subsequently merged into Nematus.

Motivation

NEMATODE is maintained with readability and modifiability in mind, and seeks to provide users with an easy to extend sandbox centered around a state-of-the-art NMT model. In this way, we hope to contribute our small part towards facilitating interesting research. Nematode is implemented in TensorFlow and supports useful features such as dynamic batching, multi-GPU training, gradient aggregation, and checkpoint averaging which allow for replication of experiments originally conducted on a large number of GPUs on a limited computational budget.

Acknowledgements

We would like to thank the authors of the Tensor2Tensor and OpenNMT-py libraries for the valuable insights offered by their respective model implementations.

Caveats

While the core transformer implementation if fully functional, the toolkit continues to be a work-in-progress.

Performance

On one Nvidia GeForce GTX Titan X (Pascal) GPU with CUDA 9.0, our transformer-BASE implementation achieves the following training speeds:

~4096 tokens per batch, no gradient aggregation, single GPU (effective batch size = ~4096 tokens):

4123.86 tokens/sec

~4096 tokens per batch, gradient aggregation over 2 update steps, 3 GPUs (effective batch size = ~25k tokens):

16336.97 tokens/sec

Following the training regime described in 'Attention is All You Need', our transformer-BASE implementation achieves 27.45 BLEU on the WMT2014 English-to-German task after 148k update steps (measured on newstest2014).

Use

To train a transformer model, modify the provided example training script - example_training_script.sh - as required.

Data parameters

parameter description
--source_dataset PATH parallel training corpus (source)
--target_dataset PATH parallel training corpus (target)
--dictionaries PATH [PATH ...] model vocabularies (source & target)
--max_vocab_source INT maximum length of the source vocabulary; unlimited by default (default: -1)
--max_vocab_target INT maximum length of the target vocabulary; unlimited by default (default: -1)

Network parameters

parameter description
--model_name MODEL_NAME model file name (default: nematode_model)
--model_type {transformer} type of the model to be trained / used for inference (default: transformer)
--embiggen_model scales up the model to match the transformer-BIG specifications
--embedding_size INT embedding layer size (default: 512)
--num_encoder_layers INT number of encoder layers (default: 6)
--num_decoder_layers INT number of decoder layers (default: 6)
--ffn_hidden_size INT inner dimensionality of feed-forward sub-layers in FAN models (default: 2048)
--hidden_size INT dimensionality of the model's hidden representations (default: 512)
--num_heads INT number of attention heads used in multi-head attention (default: 8)
--untie_decoder_embeddings untie the decoder embedding matrix from the output projection matrix
--untie_enc_dec_embeddings untie the encoder embedding matrix from the embedding and projection matrices in the decoder

Training parameters

parameter description
--max_len INT maximum sequence length for training and validation (default: 100)
--token_batch_size INT mini-batch size in tokens; set to 0 to use sentence-level batch size (default: 4096)
--sentence_batch_size INT mini-batch size in sentences (default: 64)
--maxibatch_size INT maxi-batch size (number of mini-batches sorted by length) (default: 20)
--max_epochs INT maximum number of training epochs (default: 100)
--max_updates INT maximum number of updates (default: 1000000)
--warmup_steps INT number of initial updates during which the learning rate is increased linearly during learning rate scheduling (default: 4000)
--learning_rate FLOAT initial learning rate (default: 0.0002) (DOES NOTHING FOR NOW)
--adam_beta1 FLOAT exponential decay rate of the mean estimate (default: 0.9)
--adam_beta2 FLOAT exponential decay rate of the variance estimate (default: 0.98)
--adam_epsilon FLOAT prevents division-by-zero (default: 1e-09)
--dropout_embeddings FLOAT dropout applied to sums of word embeddings and positional encodings (default: 0.1)
--dropout_residual FLOAT dropout applied to residual connections (default: 0.1)
--dropout_relu FLOAT dropout applied to the internal activation of the feed-forward sub-layers (default: 0.1)
--dropout_attn FLOAT dropout applied to attention weights (default: 0.1)
--label_smoothing_discount FLOAT discount factor for regularization via label smoothing (default: 0.1)
--grad_norm_threshold FLOAT gradient clipping threshold - may improve training stability (default: 0.0)
--teacher_forcing_off disable teacher-forcing during model training (DOES NOTHING FOR NOW)
--scheduled_sampling enable scheduled sampling to mitigate exposure bias during model training (DOES NOTHING FOR NOW)
--save_freq INT save frequency (default: 4000)
--save_to PATH model checkpoint location (default: model)
--reload PATH load existing model from this path; set to 'latest_checkpoint' to reload the latest checkpoint found in the --save_to directory
--max_checkpoints INT number of checkpoints to keep (default: 10)
--summary_dir PATH directory for saving summaries (default: same as --save_to)
--summary_freq INT summary writing frequency; 0 disables summaries (default: 100)
--num_gpus INT number of GPUs to be used by the system; no GPUs are used by default (default: 0)
--log_file PATH log file location (default: None)
--debug enable the TF debugger
--gradient_delay INT number of steps by which the optimizer updates are to be delayed; longer delays correspond to larger effective batch sizes (default: 0)
--track_grad_rates track gradient norm rates and parameter-grad rates as TensorBoard summaries

Development parameters

parameter description
--valid_source_dataset PATH source validation corpus (default: None)
--valid_target_dataset PATH target validation corpus (default: None)
--valid_freq INT validation frequency (default: 4000)
--patience INT number of steps without validation-loss improvement required for early stopping; disabled by default (default: -1)
--validate_only perform external validation with a pre-trained model
--bleu_script PATH path to the external validation script (default: None); receives path of translation source file; must write a single score to STDOUT.

Reporting parameters

parameter description
--disp_freq INT training metrics display frequency (default: 100)
--greedy_freq INT greedy sampling frequency (default: 1000)
--sample_freq INT weighted sampling frequency; disabled by default (default: 0)
--beam_freq INT beam search sampling frequency (default: 10000)
--beam_size INT size of the decoding beam (default: 4)

Translation parameters

parameter description
--translate_only translate a specified corpus using a pre-trained model
--translate_source_file PATH corpus to be translated; must be pre-processed
--translate_target_file PATH translation destination
--translate_with_beam_search translate using beam search
--length_normalization_alpha FLOAT adjusts the severity of length penalty during beam decoding (default: 0.6)
--no_normalize disable length normalization
--full_beam return all translation hypotheses within the beam
--translation_max_len INT Maximum length of translation output sentence (default: 100)

Citation

If you decide to use NEMATODE in your work, please provide a link to this repository in the corresponding documentation.

TODO

  1. Update code