From 3008979fa9003a814711eb827e721c2902675667 Mon Sep 17 00:00:00 2001 From: beckynevin Date: Mon, 22 Apr 2024 11:42:15 -0600 Subject: [PATCH] removing wd from defaults --- README.md | 23 +++++++++++++++++------ src/utils/defaults.py | 2 -- 2 files changed, 17 insertions(+), 8 deletions(-) diff --git a/README.md b/README.md index 51128e7..93b3b3e 100644 --- a/README.md +++ b/README.md @@ -12,22 +12,33 @@ DeepUQ is a package for injecting and measuring different types of uncertainty i ![GitHub Workflow Status](https://img.shields.io/github/workflow/status/owner/repo/test-repo?label=test) ## Workflow -![Folder structure overview](images/folders_deepUQ.png) +![Folder structure overview](images/DeepUQWorkflow_Maggie.png) -Getting a little more specific: +The scripts can be accessed via the ipython example notebooks or via the model modules (ie `DeepEnsemble.py`). For example, to ingest data and train a Deep Ensemble: +> cd src/scripts/ -![python module overview](images/workflow_deepUQ.png) +> python DeepEnsemble.py -These modules can be accessed via the ipython example notebooks or via the model modules (ie `DeepEnsemble.py`). For example, to ingest data and train a Deep Ensemble: -> cd src/scripts/ +With no config file specified, this command will pull settings from the `default.py` file within `utils`. For the `DeepEnsemble.py` script, it will automatically select the `DefaultsDE` dictionary. + +Another option is to specify your own config file: + +> python DeepEnsemble.py --config "path/to/config/myconfig.yaml" -> python DeepEnsemble.py low 10 /Users/rnevin/Documents/DeepUQ/ --save_final_checkpoint --savefig --n_epochs=10 +Where you would modify the "path/to/config/myconfig.yaml" to specify where your own yaml lives. + +The third option is to input settings on the command line. These choices are then combined with the default settings and output in a temporary yaml. + +> python DeepEnsemble.py --noise_level "low" --n_models 10 --out_dir ./DeepUQResources/results/--save_final_checkpoint True --savefig True --n_epochs 10 This command will train a 10 network, 10 epoch ensemble on the low noise data and will save figures and final checkpoints to the specified directory. Required arguments are the noise setting (low/medium/high), the number of ensembles, and the working directory. For more information on the arguments: > python DeepEnsemble.py --help +The other available script is the `DeepEvidentialRegression.py` script: +> python DeepEvidentialRegression.py --help + ## Installation ### Clone this repo diff --git a/src/utils/defaults.py b/src/utils/defaults.py index c601b29..e190c24 100644 --- a/src/utils/defaults.py +++ b/src/utils/defaults.py @@ -20,7 +20,6 @@ "loss_type": "bnll_loss", "n_models": 100, "init_lr": 0.001, - "wd": "./", "BETA": 0.5, "n_epochs": 100, "save_all_checkpoints": False, @@ -77,7 +76,6 @@ "model_type": "DER", "loss_type": "SDER", "init_lr": 0.001, - "wd": "./", "COEFF": 0.5, "n_epochs": 100, "save_all_checkpoints": False,