-
Notifications
You must be signed in to change notification settings - Fork 525
/
graph.py
493 lines (418 loc) · 14.4 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import re
from typing import (
Dict,
Tuple,
)
import numpy as np
from deepmd.env import (
ATTENTION_LAYER_PATTERN,
EMBEDDING_NET_PATTERN,
FITTING_NET_PATTERN,
TYPE_EMBEDDING_PATTERN,
tf,
)
from deepmd.utils.errors import (
GraphWithoutTensorError,
)
from deepmd.utils.sess import (
run_sess,
)
# TODO (JZ): I think in this file we can merge some duplicated lines into one method...
def load_graph_def(model_file: str) -> Tuple[tf.Graph, tf.GraphDef]:
"""Load graph as well as the graph_def from the frozen model(model_file).
Parameters
----------
model_file : str
The input frozen model path
Returns
-------
tf.Graph
The graph loaded from the frozen model
tf.GraphDef
The graph_def loaded from the frozen model
"""
graph_def = tf.GraphDef()
with open(model_file, "rb") as f:
graph_def.ParseFromString(f.read())
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def, name="")
return graph, graph_def
def get_tensor_by_name_from_graph(graph: tf.Graph, tensor_name: str) -> tf.Tensor:
"""Load tensor value from the given tf.Graph object.
Parameters
----------
graph : tf.Graph
The input TensorFlow graph
tensor_name : str
Indicates which tensor which will be loaded from the frozen model
Returns
-------
tf.Tensor
The tensor which was loaded from the frozen model
Raises
------
GraphWithoutTensorError
Whether the tensor_name is within the frozen model
"""
try:
tensor = graph.get_tensor_by_name(tensor_name + ":0")
except KeyError as e:
raise GraphWithoutTensorError() from e
with tf.Session(graph=graph) as sess:
tensor = run_sess(sess, tensor)
return tensor
def get_tensor_by_name(model_file: str, tensor_name: str) -> tf.Tensor:
"""Load tensor value from the frozen model(model_file).
Parameters
----------
model_file : str
The input frozen model path
tensor_name : str
Indicates which tensor which will be loaded from the frozen model
Returns
-------
tf.Tensor
The tensor which was loaded from the frozen model
Raises
------
GraphWithoutTensorError
Whether the tensor_name is within the frozen model
"""
graph, _ = load_graph_def(model_file)
return get_tensor_by_name_from_graph(graph, tensor_name)
def get_tensor_by_type(node, data_type: np.dtype) -> tf.Tensor:
"""Get the tensor value within the given node according to the input data_type.
Parameters
----------
node
The given tensorflow graph node
data_type
The data type of the node
Returns
-------
tf.Tensor
The tensor value of the given node
"""
if data_type == np.float64:
tensor = np.array(node.double_val)
elif data_type == np.float32:
tensor = np.array(node.float_val)
else:
raise RuntimeError("model compression does not support the half precision")
return tensor
def get_pattern_nodes_from_graph_def(graph_def: tf.GraphDef, pattern: str) -> Dict:
"""Get the pattern nodes with the given tf.GraphDef object.
Parameters
----------
graph_def
The input tf.GraphDef object
pattern
The node pattern within the graph_def
Returns
-------
Dict
The fitting net nodes within the given tf.GraphDef object
"""
nodes = {}
pattern = re.compile(pattern)
for node in graph_def.node:
if re.fullmatch(pattern, node.name) is not None:
nodes[node.name] = node.attr["value"].tensor
return nodes
def get_embedding_net_nodes_from_graph_def(
graph_def: tf.GraphDef, suffix: str = ""
) -> Dict:
"""Get the embedding net nodes with the given tf.GraphDef object.
Parameters
----------
graph_def
The input tf.GraphDef object
suffix : str, optional
The scope suffix
Returns
-------
Dict
The embedding net nodes within the given tf.GraphDef object
"""
# embedding_net_pattern = f"filter_type_\d+{suffix}/matrix_\d+_\d+|filter_type_\d+{suffix}/bias_\d+_\d+|filter_type_\d+{suffix}/idt_\d+_\d+|filter_type_all{suffix}/matrix_\d+_\d+|filter_type_all{suffix}/matrix_\d+_\d+_\d+|filter_type_all{suffix}/bias_\d+_\d+|filter_type_all{suffix}/bias_\d+_\d+_\d+|filter_type_all{suffix}/idt_\d+_\d+"
if suffix != "":
embedding_net_pattern = (
EMBEDDING_NET_PATTERN.replace("/idt", suffix + "/idt")
.replace("/bias", suffix + "/bias")
.replace("/matrix", suffix + "/matrix")
)
else:
embedding_net_pattern = EMBEDDING_NET_PATTERN
embedding_net_nodes = get_pattern_nodes_from_graph_def(
graph_def, embedding_net_pattern
)
for key in embedding_net_nodes.keys():
assert (
key.find("bias") > 0 or key.find("matrix") > 0
), "currently, only support weight matrix and bias matrix at the tabulation op!"
return embedding_net_nodes
def get_embedding_net_nodes(model_file: str, suffix: str = "") -> Dict:
"""Get the embedding net nodes with the given frozen model(model_file).
Parameters
----------
model_file
The input frozen model path
suffix : str, optional
The suffix of the scope
Returns
-------
Dict
The embedding net nodes with the given frozen model
"""
_, graph_def = load_graph_def(model_file)
return get_embedding_net_nodes_from_graph_def(graph_def, suffix=suffix)
def get_embedding_net_variables_from_graph_def(
graph_def: tf.GraphDef, suffix: str = ""
) -> Dict:
"""Get the embedding net variables with the given tf.GraphDef object.
Parameters
----------
graph_def
The input tf.GraphDef object
suffix : str, optional
The suffix of the scope
Returns
-------
Dict
The embedding net variables within the given tf.GraphDef object
"""
embedding_net_variables = {}
embedding_net_nodes = get_embedding_net_nodes_from_graph_def(
graph_def, suffix=suffix
)
for item in embedding_net_nodes:
node = embedding_net_nodes[item]
dtype = tf.as_dtype(node.dtype).as_numpy_dtype
tensor_shape = tf.TensorShape(node.tensor_shape).as_list()
if (len(tensor_shape) != 1) or (tensor_shape[0] != 1):
tensor_value = np.frombuffer(
node.tensor_content, dtype=tf.as_dtype(node.dtype).as_numpy_dtype
)
else:
tensor_value = get_tensor_by_type(node, dtype)
embedding_net_variables[item] = np.reshape(tensor_value, tensor_shape)
return embedding_net_variables
def get_embedding_net_variables(model_file: str, suffix: str = "") -> Dict:
"""Get the embedding net variables with the given frozen model(model_file).
Parameters
----------
model_file
The input frozen model path
suffix : str, optional
The suffix of the scope
Returns
-------
Dict
The embedding net variables within the given frozen model
"""
_, graph_def = load_graph_def(model_file)
return get_embedding_net_variables_from_graph_def(graph_def, suffix=suffix)
def get_fitting_net_nodes_from_graph_def(
graph_def: tf.GraphDef, suffix: str = ""
) -> Dict:
"""Get the fitting net nodes with the given tf.GraphDef object.
Parameters
----------
graph_def
The input tf.GraphDef object
suffix
suffix of the scope
Returns
-------
Dict
The fitting net nodes within the given tf.GraphDef object
"""
if suffix != "":
fitting_net_pattern = (
FITTING_NET_PATTERN.replace("/idt", suffix + "/idt")
.replace("/bias", suffix + "/bias")
.replace("/matrix", suffix + "/matrix")
)
else:
fitting_net_pattern = FITTING_NET_PATTERN
fitting_net_nodes = get_pattern_nodes_from_graph_def(graph_def, fitting_net_pattern)
for key in fitting_net_nodes.keys():
assert (
key.find("bias") > 0 or key.find("matrix") > 0 or key.find("idt") > 0
), "currently, only support weight matrix, bias and idt at the model compression process!"
return fitting_net_nodes
def get_fitting_net_nodes(model_file: str) -> Dict:
"""Get the fitting net nodes with the given frozen model(model_file).
Parameters
----------
model_file
The input frozen model path
Returns
-------
Dict
The fitting net nodes with the given frozen model
"""
_, graph_def = load_graph_def(model_file)
return get_fitting_net_nodes_from_graph_def(graph_def)
def get_fitting_net_variables_from_graph_def(
graph_def: tf.GraphDef, suffix: str = ""
) -> Dict:
"""Get the fitting net variables with the given tf.GraphDef object.
Parameters
----------
graph_def
The input tf.GraphDef object
suffix
suffix of the scope
Returns
-------
Dict
The fitting net variables within the given tf.GraphDef object
"""
fitting_net_variables = {}
fitting_net_nodes = get_fitting_net_nodes_from_graph_def(graph_def, suffix=suffix)
for item in fitting_net_nodes:
node = fitting_net_nodes[item]
dtype = tf.as_dtype(node.dtype).as_numpy_dtype
tensor_shape = tf.TensorShape(node.tensor_shape).as_list()
if (len(tensor_shape) != 1) or (tensor_shape[0] != 1):
tensor_value = np.frombuffer(
node.tensor_content, dtype=tf.as_dtype(node.dtype).as_numpy_dtype
)
else:
tensor_value = get_tensor_by_type(node, dtype)
fitting_net_variables[item] = np.reshape(tensor_value, tensor_shape)
return fitting_net_variables
def get_fitting_net_variables(model_file: str, suffix: str = "") -> Dict:
"""Get the fitting net variables with the given frozen model(model_file).
Parameters
----------
model_file
The input frozen model path
suffix
suffix of the scope
Returns
-------
Dict
The fitting net variables within the given frozen model
"""
_, graph_def = load_graph_def(model_file)
return get_fitting_net_variables_from_graph_def(graph_def, suffix=suffix)
def get_type_embedding_net_nodes_from_graph_def(
graph_def: tf.GraphDef, suffix: str = ""
) -> Dict:
"""Get the type embedding net nodes with the given tf.GraphDef object.
Parameters
----------
graph_def
The input tf.GraphDef object
suffix : str, optional
The scope suffix
Returns
-------
Dict
The type embedding net nodes within the given tf.GraphDef object
"""
if suffix != "":
type_embedding_net_pattern = (
TYPE_EMBEDDING_PATTERN.replace("/idt", suffix + "/idt")
.replace("/bias", suffix + "/bias")
.replace("/matrix", suffix + "/matrix")
)
else:
type_embedding_net_pattern = TYPE_EMBEDDING_PATTERN
type_embedding_net_nodes = get_pattern_nodes_from_graph_def(
graph_def, type_embedding_net_pattern
)
return type_embedding_net_nodes
def get_type_embedding_net_variables_from_graph_def(
graph_def: tf.GraphDef, suffix: str = ""
) -> Dict:
"""Get the type embedding net variables with the given tf.GraphDef object.
Parameters
----------
graph_def : tf.GraphDef
The input tf.GraphDef object
suffix : str, optional
The suffix of the scope
Returns
-------
Dict
The embedding net variables within the given tf.GraphDef object
"""
type_embedding_net_variables = {}
type_embedding_net_nodes = get_type_embedding_net_nodes_from_graph_def(
graph_def, suffix=suffix
)
for item in type_embedding_net_nodes:
node = type_embedding_net_nodes[item]
dtype = tf.as_dtype(node.dtype).as_numpy_dtype
tensor_shape = tf.TensorShape(node.tensor_shape).as_list()
if (len(tensor_shape) != 1) or (tensor_shape[0] != 1):
tensor_value = np.frombuffer(
node.tensor_content, dtype=tf.as_dtype(node.dtype).as_numpy_dtype
)
else:
tensor_value = get_tensor_by_type(node, dtype)
type_embedding_net_variables[item] = np.reshape(tensor_value, tensor_shape)
return type_embedding_net_variables
def get_attention_layer_nodes_from_graph_def(
graph_def: tf.GraphDef, suffix: str = ""
) -> Dict:
"""Get the attention layer nodes with the given tf.GraphDef object.
Parameters
----------
graph_def
The input tf.GraphDef object
suffix : str, optional
The scope suffix
Returns
-------
Dict
The attention layer nodes within the given tf.GraphDef object
"""
if suffix != "":
attention_layer_pattern = (
ATTENTION_LAYER_PATTERN.replace("/c_query", suffix + "/c_query")
.replace("/c_key", suffix + "/c_key")
.replace("/c_value", suffix + "/c_value")
.replace("/c_out", suffix + "/c_out")
.replace("/layer_normalization", suffix + "/layer_normalization")
)
else:
attention_layer_pattern = ATTENTION_LAYER_PATTERN
attention_layer_nodes = get_pattern_nodes_from_graph_def(
graph_def, attention_layer_pattern
)
return attention_layer_nodes
def get_attention_layer_variables_from_graph_def(
graph_def: tf.GraphDef, suffix: str = ""
) -> Dict:
"""Get the attention layer variables with the given tf.GraphDef object.
Parameters
----------
graph_def : tf.GraphDef
The input tf.GraphDef object
suffix : str, optional
The suffix of the scope
Returns
-------
Dict
The attention layer variables within the given tf.GraphDef object
"""
attention_layer_variables = {}
attention_layer_net_nodes = get_attention_layer_nodes_from_graph_def(
graph_def, suffix=suffix
)
for item in attention_layer_net_nodes:
node = attention_layer_net_nodes[item]
dtype = tf.as_dtype(node.dtype).as_numpy_dtype
tensor_shape = tf.TensorShape(node.tensor_shape).as_list()
if (len(tensor_shape) != 1) or (tensor_shape[0] != 1):
tensor_value = np.frombuffer(
node.tensor_content, dtype=tf.as_dtype(node.dtype).as_numpy_dtype
)
else:
tensor_value = get_tensor_by_type(node, dtype)
attention_layer_variables[item] = np.reshape(tensor_value, tensor_shape)
return attention_layer_variables