-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy patheval.py
133 lines (112 loc) · 3.5 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import os
import pprint
import argparse
from tqdm import tqdm
import torch
from torchmetrics.image.fid import NoTrainInceptionV3
import util
from model import *
from trainer import evaluate, prepare_data_for_gan, prepare_data_for_inception
def parse_args():
r"""
Parses command line arguments.
"""
root_dir = os.path.abspath(os.path.dirname(__file__))
parser = argparse.ArgumentParser()
parser.add_argument(
"--data_dir",
type=str,
default=os.path.join(root_dir, "data"),
help="Path to dataset directory.",
)
parser.add_argument(
"--ckpt_path",
type=str,
required=True,
help="Path to checkpoint used for evaluation.",
)
parser.add_argument(
"--im_size",
type=int,
required=True,
help=(
"Images are resized to this resolution. "
"Models are automatically selected based on resolution."
),
)
parser.add_argument(
"--batch_size",
type=int,
default=64,
help="Minibatch size used during evaluation.",
)
parser.add_argument(
"--device",
type=str,
default=("cuda:0" if torch.cuda.is_available() else "cpu"),
help="Device to evaluate on.",
)
parser.add_argument(
"--submit",
default=False,
action="store_true",
help="Generate Inception embeddings used for leaderboard submission.",
)
return parser.parse_args()
def generate_submission(net_g, dataloader, nz, device, path="submission.pth"):
r"""
Generates Inception embeddings for leaderboard submission.
"""
net_g.to(device).eval()
inception = NoTrainInceptionV3(
name="inception-v3-compat", features_list=["2048"]
).to(device)
with torch.no_grad():
real_embs, fake_embs = [], []
for data, _ in tqdm(dataloader, desc="Generating Submission"):
reals, z = prepare_data_for_gan(data, nz, device)
fakes = net_g(z)
reals = inception(prepare_data_for_inception(reals, device))
fakes = inception(prepare_data_for_inception(fakes, device))
real_embs.append(reals)
fake_embs.append(fakes)
real_embs = torch.cat(real_embs)
fake_embs = torch.cat(fake_embs)
embs = torch.stack((real_embs, fake_embs)).permute(1, 0, 2).cpu()
torch.save(embs, path)
def eval(args):
r"""
Evaluates specified checkpoint.
"""
# Set parameters
nz, eval_size, num_workers = (
128,
4000 if args.submit else 10000,
4,
)
# Configure models
if args.im_size == 32:
net_g = Generator32()
net_d = Discriminator32()
elif args.im_size == 64:
net_g = Generator64()
net_d = Discriminator64()
else:
raise NotImplementedError(f"Unsupported image size '{args.im_size}'.")
# Loads checkpoint
state_dict = torch.load(args.ckpt_path)
net_g.load_state_dict(state_dict["net_g"])
net_d.load_state_dict(state_dict["net_d"])
# Configures eval dataloader
_, eval_dataloader = util.get_dataloaders(
args.data_dir, args.im_size, args.batch_size, eval_size, num_workers
)
if args.submit:
# Generate leaderboard submission
generate_submission(net_g, eval_dataloader, nz, args.device)
else:
# Evaluate models
metrics = evaluate(net_g, net_d, eval_dataloader, nz, args.device)
pprint.pprint(metrics)
if __name__ == "__main__":
eval(parse_args())