-
Notifications
You must be signed in to change notification settings - Fork 6
/
per.py
348 lines (279 loc) · 11.7 KB
/
per.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import argparse
import operator
import time
from wrappers import build_env
from config import *
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--seed', help='random seed', type=int, default=0)
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
tf.random.set_seed(args.seed) # reproducible
env = build_env(env_id, seed=args.seed)
in_dim = env.observation_space.shape
action_dim = env.action_space.n
# ############################## Network ####################################
class QFunc(tf.keras.Model):
def __init__(self, name):
super(QFunc, self).__init__(name=name)
self.conv1 = tf.keras.layers.Conv2D(
32, kernel_size=(8, 8), strides=(4, 4),
padding='valid', activation='relu')
self.conv2 = tf.keras.layers.Conv2D(
64, kernel_size=(4, 4), strides=(2, 2),
padding='valid', activation='relu')
self.conv3 = tf.keras.layers.Conv2D(
64, kernel_size=(3, 3), strides=(1, 1),
padding='valid', activation='relu')
self.flat = tf.keras.layers.Flatten()
self.fc1 = tf.keras.layers.Dense(512, activation='relu')
self.fc2 = tf.keras.layers.Dense(action_dim, activation='linear')
def call(self, pixels, **kwargs):
# scale observation
pixels = tf.divide(tf.cast(pixels, tf.float32), tf.constant(255.0))
# extract features by convolutional layers
feature = self.flat(self.conv3(self.conv2(self.conv1(pixels))))
# calculate q-value
qvalue = self.fc2(self.fc1(feature))
return qvalue
# ############################## Replay ####################################
class SegmentTree(object):
def __init__(self, capacity, operation, neutral_element):
"""Build a Segment Tree data structure.
https://en.wikipedia.org/wiki/Segment_tree
Can be used as regular array, but with two
important differences:
a) setting item's value is slightly slower.
It is O(lg capacity) instead of O(1).
b) user has access to an efficient ( O(log segment size) )
`reduce` operation which reduces `operation` over
a contiguous subsequence of items in the array.
Paramters
---------
capacity: int
Total size of the array - must be a power of two.
operation: lambda obj, obj -> obj
and operation for combining elements (eg. sum, max)
must form a mathematical group together with the set of
possible values for array elements (i.e. be associative)
neutral_element: obj
neutral element for the operation above. eg. float('-inf')
for max and 0 for sum.
"""
assert capacity > 0 and capacity & (capacity - 1) == 0, \
"capacity must be positive and a power of 2."
self._capacity = capacity
self._value = [neutral_element for _ in range(2 * capacity)]
self._operation = operation
def _reduce_helper(self, start, end, node, node_start, node_end):
if start == node_start and end == node_end:
return self._value[node]
mid = (node_start + node_end) // 2
if end <= mid:
return self._reduce_helper(start, end, 2 * node, node_start, mid)
else:
if mid + 1 <= start:
return self._reduce_helper(start, end, 2 * node + 1, mid + 1, node_end)
else:
return self._operation(
self._reduce_helper(start, mid, 2 * node, node_start, mid),
self._reduce_helper(mid + 1, end, 2 * node + 1, mid + 1, node_end)
)
def reduce(self, start=0, end=None):
"""Returns result of applying `self.operation`
to a contiguous subsequence of the array.
Parameters
----------
start: int
beginning of the subsequence
end: int
end of the subsequences
Returns
-------
reduced: obj
result of reducing self.operation over the specified range of array.
"""
if end is None:
end = self._capacity - 1
if end < 0:
end += self._capacity
return self._reduce_helper(start, end, 1, 0, self._capacity - 1)
def __setitem__(self, idx, val):
# index of the leaf
idx += self._capacity
self._value[idx] = val
idx //= 2
while idx >= 1:
self._value[idx] = self._operation(self._value[2 * idx], self._value[2 * idx + 1])
idx //= 2
def __getitem__(self, idx):
assert 0 <= idx < self._capacity
return self._value[self._capacity + idx]
class SumSegmentTree(SegmentTree):
def __init__(self, capacity):
super(SumSegmentTree, self).__init__(
capacity=capacity, operation=operator.add, neutral_element=0.0)
def sum(self, start=0, end=None):
"""Returns arr[start] + ... + arr[end]"""
return super(SumSegmentTree, self).reduce(start, end)
def find_prefixsum_idx(self, prefixsum):
"""Find the highest index `i` in the array such that
sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum
if array values are probabilities, this function
allows to sample indexes according to the discrete
probability efficiently.
Parameters
----------
perfixsum: float
upperbound on the sum of array prefix
Returns
-------
idx: int
highest index satisfying the prefixsum constraint
"""
assert 0 <= prefixsum <= self.sum() + 1e-5
idx = 1
while idx < self._capacity: # while non-leaf
if self._value[2 * idx] > prefixsum:
idx = 2 * idx
else:
prefixsum -= self._value[2 * idx]
idx = 2 * idx + 1
return idx - self._capacity
class MinSegmentTree(SegmentTree):
def __init__(self, capacity):
super(MinSegmentTree, self).__init__(
capacity=capacity, operation=min, neutral_element=float('inf'))
def min(self, start=0, end=None):
"""Returns min(arr[start], ..., arr[end])"""
return super(MinSegmentTree, self).reduce(start, end)
class PrioritizedReplayBuffer(ReplayBuffer):
def __init__(self, size, alpha, beta):
"""Create Prioritized Replay buffer.
Parameters
----------
size: int
Max number of transitions to store in the buffer. When the buffer
overflows the old memories are dropped.
alpha: float
how much prioritization is used
(0 - no prioritization, 1 - full prioritization)
See Also
--------
ReplayBuffer.__init__
"""
super(PrioritizedReplayBuffer, self).__init__(size)
assert alpha >= 0
self._alpha = alpha
it_capacity = 1
while it_capacity < size:
it_capacity *= 2
self._it_sum = SumSegmentTree(it_capacity)
self._it_min = MinSegmentTree(it_capacity)
self._max_priority = 1.0
self.beta = beta
def add(self, *args):
"""See ReplayBuffer.store_effect"""
idx = self._next_idx
super().add(*args)
self._it_sum[idx] = self._max_priority**self._alpha
self._it_min[idx] = self._max_priority**self._alpha
def _sample_proportional(self, batch_size):
res = []
p_total = self._it_sum.sum(0, len(self._storage) - 1)
every_range_len = p_total / batch_size
for i in range(batch_size):
mass = random.random() * every_range_len + i * every_range_len
idx = self._it_sum.find_prefixsum_idx(mass)
res.append(idx)
return res
def sample(self, batch_size):
"""Sample a batch of experiences"""
idxes = self._sample_proportional(batch_size)
it_sum = self._it_sum.sum()
p_min = self._it_min.min() / it_sum
max_weight = (p_min * len(self._storage))**(-self.beta)
p_samples = np.asarray([self._it_sum[idx] for idx in idxes]) / it_sum
weights = (p_samples * len(self._storage))**(-self.beta) / max_weight
encoded_sample = self._encode_sample(idxes)
return encoded_sample + (weights.astype('float32'), idxes)
def update_priorities(self, idxes, priorities):
"""Update priorities of sampled transitions"""
assert len(idxes) == len(priorities)
for idx, priority in zip(idxes, priorities):
assert priority > 0
assert 0 <= idx < len(self._storage)
self._it_sum[idx] = priority**self._alpha
self._it_min[idx] = priority**self._alpha
self._max_priority = max(self._max_priority, priority)
# ############################### DQN #####################################
class DQN(object):
def __init__(self):
self.qnet = QFunc('q')
self.targetqnet = QFunc('targetq')
sync(self.qnet, self.targetqnet)
self.niter = 0
self.optimizer = tf.optimizers.Adam(lr, epsilon=1e-5, clipnorm=clipnorm)
def get_action(self, obv):
eps = epsilon(self.niter)
if random.random() < eps:
return int(random.random() * action_dim)
else:
obv = np.expand_dims(obv, 0).astype('float32')
return self._qvalues_func(obv).numpy().argmax(1)[0]
@tf.function
def _qvalues_func(self, obv):
return self.qnet(obv)
def train(self, b_o, b_a, b_r, b_o_, b_d, b_w):
td_errors = self._train_func(b_o, b_a, b_r, b_o_, b_d, b_w)
self.niter += 1
if self.niter % target_q_update_freq == 0:
sync(self.qnet, self.targetqnet)
return td_errors.numpy()
@tf.function
def _train_func(self, b_o, b_a, b_r, b_o_, b_d, b_w):
with tf.GradientTape() as tape:
td_errors = self._tderror_func(b_o, b_a, b_r, b_o_, b_d)
loss = tf.reduce_mean(huber_loss(td_errors) * b_w)
grad = tape.gradient(loss, self.qnet.trainable_weights)
self.optimizer.apply_gradients(zip(grad, self.qnet.trainable_weights))
return td_errors
@tf.function
def _tderror_func(self, b_o, b_a, b_r, b_o_, b_d):
b_q_ = (1 - b_d) * tf.reduce_max(self.targetqnet(b_o_), 1)
b_q = tf.reduce_sum(self.qnet(b_o) * tf.one_hot(b_a, action_dim), 1)
return b_q - (b_r + reward_gamma * b_q_)
# ############################# Trainer ###################################
if __name__ == '__main__':
dqn = DQN()
buffer = PrioritizedReplayBuffer(
buffer_size, prioritized_alpha, prioritized_beta0)
o = env.reset()
nepisode = 0
t = time.time()
for i in range(1, number_timesteps + 1):
a = dqn.get_action(o)
# execute action and feed to replay buffer
# note that `_` tail in var name means next
o_, r, done, info = env.step(a)
buffer.add(o, a, r, o_, done)
if i >= warm_start and i % train_freq == 0:
*transitions, idxs = buffer.sample(batch_size)
priorities = dqn.train(*transitions)
priorities = np.clip(np.abs(priorities), 1e-6, None)
buffer.update_priorities(idxs, priorities)
if done:
o = env.reset()
else:
o = o_
buffer.beta += (1 - prioritized_beta0) / number_timesteps
# episode in info is real (unwrapped) message
if info.get('episode'):
nepisode += 1
reward, length = info['episode']['r'], info['episode']['l']
print(
'Time steps so far: {}, episode so far: {}, '
'episode reward: {:.4f}, episode length: {}'
.format(i, nepisode, reward, length)
)