-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdouble.py
132 lines (104 loc) · 4.29 KB
/
double.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import time
from wrappers import build_env
from config import *
from utils import *
parser = argparse.ArgumentParser()
parser.add_argument('--seed', help='random seed', type=int, default=0)
args = parser.parse_args()
random.seed(args.seed)
np.random.seed(args.seed)
tf.random.set_seed(args.seed) # reproducible
env = build_env(env_id, seed=args.seed)
in_dim = env.observation_space.shape
action_dim = env.action_space.n
# ############################## Network ####################################
class QFunc(tf.keras.Model):
def __init__(self, name):
super(QFunc, self).__init__(name=name)
self.conv1 = tf.keras.layers.Conv2D(
32, kernel_size=(8, 8), strides=(4, 4),
padding='valid', activation='relu')
self.conv2 = tf.keras.layers.Conv2D(
64, kernel_size=(4, 4), strides=(2, 2),
padding='valid', activation='relu')
self.conv3 = tf.keras.layers.Conv2D(
64, kernel_size=(3, 3), strides=(1, 1),
padding='valid', activation='relu')
self.flat = tf.keras.layers.Flatten()
self.fc1 = tf.keras.layers.Dense(512, activation='relu')
self.fc2 = tf.keras.layers.Dense(action_dim, activation='linear')
def call(self, pixels, **kwargs):
# scale observation
pixels = tf.divide(tf.cast(pixels, tf.float32), tf.constant(255.0))
# extract features by convolutional layers
feature = self.flat(self.conv3(self.conv2(self.conv1(pixels))))
# calculate q-value
qvalue = self.fc2(self.fc1(feature))
return qvalue
# ############################### DQN #####################################
class DQN(object):
def __init__(self):
self.qnet = QFunc('q')
self.targetqnet = QFunc('targetq')
sync(self.qnet, self.targetqnet)
self.niter = 0
self.optimizer = tf.optimizers.Adam(lr, epsilon=1e-5, clipnorm=clipnorm)
def get_action(self, obv):
eps = epsilon(self.niter)
if random.random() < eps:
return int(random.random() * action_dim)
else:
obv = np.expand_dims(obv, 0).astype('float32')
return self._qvalues_func(obv).numpy().argmax(1)[0]
@tf.function
def _qvalues_func(self, obv):
return self.qnet(obv)
def train(self, b_o, b_a, b_r, b_o_, b_d):
self._train_func(b_o, b_a, b_r, b_o_, b_d)
self.niter += 1
if self.niter % target_q_update_freq == 0:
sync(self.qnet, self.targetqnet)
@tf.function
def _train_func(self, b_o, b_a, b_r, b_o_, b_d):
with tf.GradientTape() as tape:
td_errors = self._tderror_func(b_o, b_a, b_r, b_o_, b_d)
loss = tf.reduce_mean(huber_loss(td_errors))
grad = tape.gradient(loss, self.qnet.trainable_weights)
self.optimizer.apply_gradients(zip(grad, self.qnet.trainable_weights))
return td_errors
@tf.function
def _tderror_func(self, b_o, b_a, b_r, b_o_, b_d):
b_a_ = tf.one_hot(tf.argmax(self.qnet(b_o_), 1), action_dim)
b_q_ = (1 - b_d) * tf.reduce_sum(self.targetqnet(b_o_) * b_a_, 1)
b_q = tf.reduce_sum(self.qnet(b_o) * tf.one_hot(b_a, action_dim), 1)
return b_q - (b_r + reward_gamma * b_q_)
# ############################# Trainer ###################################
if __name__ == '__main__':
dqn = DQN()
buffer = ReplayBuffer(buffer_size)
o = env.reset()
nepisode = 0
t = time.time()
for i in range(1, number_timesteps + 1):
a = dqn.get_action(o)
# execute action and feed to replay buffer
# note that `_` tail in var name means next
o_, r, done, info = env.step(a)
buffer.add(o, a, r, o_, done)
if i >= warm_start and i % train_freq == 0:
transitions = buffer.sample(batch_size)
dqn.train(*transitions)
if done:
o = env.reset()
else:
o = o_
# episode in info is real (unwrapped) message
if info.get('episode'):
nepisode += 1
reward, length = info['episode']['r'], info['episode']['l']
print(
'Time steps so far: {}, episode so far: {}, '
'episode reward: {:.4f}, episode length: {}'
.format(i, nepisode, reward, length)
)