-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreader_test.py
68 lines (56 loc) · 2.16 KB
/
reader_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for models.tutorials.rnn.ptb.reader."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import tensorflow as tf
import reader
class PtbReaderTest(tf.test.TestCase):
def setUp(self):
self._string_data = "\n".join(
[" hello there i am",
" rain as day",
" want some cheesy puffs ?"])
def testPtbRawData(self):
tmpdir = tf.test.get_temp_dir()
for suffix in "train", "valid", "test":
filename = os.path.join(tmpdir, "ptb.%s.txt" % suffix)
with tf.gfile.GFile(filename, "w") as fh:
fh.write(self._string_data)
# Smoke test
output = reader.ptb_raw_data(tmpdir)
self.assertEqual(len(output), 4)
def testPtbProducer(self):
raw_data = [4, 3, 2, 1, 0, 5, 6, 1, 1, 1, 1, 0, 3, 4, 1]
batch_size = 3
num_steps = 2
x, y = reader.ptb_producer(raw_data, batch_size, num_steps)
with self.test_session() as session:
coord = tf.train.Coordinator()
tf.train.start_queue_runners(session, coord=coord)
try:
xval, yval = session.run([x, y])
self.assertAllEqual(xval, [[4, 3], [5, 6], [1, 0]])
self.assertAllEqual(yval, [[3, 2], [6, 1], [0, 3]])
xval, yval = session.run([x, y])
self.assertAllEqual(xval, [[2, 1], [1, 1], [3, 4]])
self.assertAllEqual(yval, [[1, 0], [1, 1], [4, 1]])
finally:
coord.request_stop()
coord.join()
if __name__ == "__main__":
tf.test.main()