-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpredict.py
57 lines (55 loc) · 2.44 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from __future__ import print_function, division
import torch
from my_utils import *
from config import data_transforms
# skorch
from skorch import NeuralNetClassifier
import pickle
import pandas as pd
import argparse
import os
'''
predict using model specified my model_name and save_model
Args:
model_name: name of the model, eg: reg34 (available in config.py)
device: cpu or gpu
save_model: trained model parameter (must be consistent with model_name, available in config.py)
testset: pytorch Dataset instance of testing images
save_type: save output as csv or pickle?
img_path: path of testing images
'''
def predict(model_name, device, save_model, testset, img_path, save_type = "csv"):
# print("Testing model ", model_name)
model, input_size = get_pretrained_models(model_name)
model.eval()
net = NeuralNetClassifier(model, device = device)
net.initialize() # This is important!
net.load_params(f_params=save_model)
y_preds = net.predict(testset)
if save_type == "pickle":
SAVE_OUTPUT_NAME = model_name + "_outputs.pkl"
with open(os.path.join("outputs", SAVE_OUTPUT_NAME), "wb") as j:
pickle.dump({"model_outputs": y_preds}, j)
elif save_type == "csv":
SAVE_OUTPUT_NAME = model_name + "_outputs.csv"
output_df = pd.DataFrame()
output_df['path'] = img_path
output_df['label'] = testset.labels
output_df['output'] = y_preds
output_df.to_csv(os.path.join("outputs", SAVE_OUTPUT_NAME), index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Take model name and model path as input')
parser.add_argument('-m', '--model_name', action="store", help='Name of testing model', required=True)
parser.add_argument('-p', '--path', action="store", help='Saved parameter path', required=True)
args = parser.parse_args()
model, model_param_path = args.model_name, args.path
device = torch.device("cuda:0" if torch.cuda.is_available else "cpu")
csv_path = "./dataset.csv"
test_df = pd.read_csv(csv_path)
test_df['num_label'], _ = pd.factorize(test_df['label']) # turn labels (string) into numbers
test_df = test_df[test_df['type'] == "test"]
img_path = test_df['path'].values
labels = test_df['num_label'].values
input_size = 244
dataset_test = Alzheimer_Dataset(img_path, labels, transform=data_transforms['val'])
predict(model, device, model_param_path, dataset_test, img_path)