-
Notifications
You must be signed in to change notification settings - Fork 526
SMP2020微博情绪分类技术评测
zhezhaoa edited this page Jan 13, 2021
·
12 revisions
我们随机选择了一些预训练模型并对其微调。我们使用K折交叉验证,用微调的模型对训练数据集进行预测,之后生成特征(预测概率)以进行stacking集成:
CUDA_VISIBLE_DEVICES=0,1 python3 run_classifier_cv.py --pretrained_model_path models/reviews_bert_large_model.bin \
--vocab_path models/google_zh_vocab.txt \
--output_model_path models/ewect_usual_classifier_model_0.bin \
--config_path models/bert_large_config.json \
--train_path datasets/smp2020-ewect/usual/train.tsv \
--train_features_path datasets/smp2020-ewect/usual/train_features_0.npy \
--folds_num 5 --epochs_num 3 --batch_size 64 --seed 17 \
--embedding word_pos_seg --encoder transformer --mask fully_visible
CUDA_VISIBLE_DEVICES=0,1,2,3 python3 run_classifier_cv.py --pretrained_model_path models/mixed_corpus_bert_large_model.bin \
--vocab_path models/google_zh_vocab.txt \
--output_model_path models/ewect_usual_classifier_model_1.bin \
--config_path models/bert_large_config.json \
--train_path datasets/smp2020-ewect/usual/train.tsv \
--train_features_path datasets/smp2020-ewect/usual/train_features_1.npy \
--folds_num 5 --epochs_num 3 --batch_size 64 --seq_length 160 \
--embedding word_pos_seg --encoder transformer --mask fully_visible
CUDA_VISIBLE_DEVICES=0 python3 run_classifier_cv.py --pretrained_model_path models/mixed_corpus_gpt_base_model.bin \
--vocab_path models/google_zh_vocab.txt \
--output_model_path models/ewect_usual_classifier_model_2.bin \
--config_path models/bert_base_config.json \
--train_path datasets/smp2020-ewect/usual/train.tsv \
--train_features_path datasets/smp2020-ewect/usual/train_features_2.npy \
--folds_num 5 --epochs_num 3 --batch_size 32 --seq_length 100 \
--embedding word_pos_seg --encoder transformer --mask causal --pooling mean
CUDA_VISIBLE_DEVICES=0 python3 run_classifier_cv.py --pretrained_model_path models/mixed_corpus_elmo_model.bin \
--vocab_path models/google_zh_vocab.txt \
--config_path models/birnn_config.json \
--output_model_path models/ewect_usual_classifier_model_3.bin \
--train_path datasets/smp2020-ewect/usual/train.tsv \
--train_features_path datasets/smp2020-ewect/virus/usual_features_3.npy \
--epochs_num 3 --batch_size 64 --learning_rate 5e-4 --folds_num 5 \
--embedding word --encoder bilstm --pooling mean
CUDA_VISIBLE_DEVICES=0 python3 run_classifier_cv.py --pretrained_model_path models/wikizh_gatedcnn_model.bin \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gatedcnn_9_config.json \
--output_model_path models/ewect_usual_classifier_model_4.bin \
--train_path datasets/smp2020-ewect/usual/train.tsv \
--train_features_path datasets/smp2020-ewect/usual/train_features_4.npy \
--epochs_num 3 --batch_size 64 --learning_rate 5e-5 --folds_num 5 \
--embedding word --encoder gatedcnn --pooling max
然后,我们使用基于树的模型来处理提取的特征,我们使用贝叶斯优化来找到合适的超参数:
python3 scripts/run_bayesopt.py --train_path datasets/smp2020-ewect/usual/train.tsv \
--train_features_path datasets/smp2020-ewect/usual/ \
--models_num 5 --folds_num 5 --labels_num 6 --epochs_num 100
确定基于树的模型的超参数后,我们提取验证集特征并进行基于树的模型的训练和预测:
CUDA_VISIBLE_DEVICES=0 python3 inference/run_classifier_infer_cv.py --load_model_path models/ewect_usual_classifier_model_0.bin \
--vocab_path models/google_zh_vocab.txt \
--config_path models/bert_large_config.json \
--test_path datasets/smp2020-ewect/usual/dev.tsv \
--test_features_path datasets/smp2020-ewect/usual/test_features_0.npy --folds_num 5 --labels_num 6 \
--embedding word_pos_seg --encoder transformer --mask fully_visible
CUDA_VISIBLE_DEVICES=0 python3 inference/run_classifier_infer_cv.py --load_model_path models/ewect_usual_classifier_model_1.bin \
--vocab_path models/google_zh_vocab.txt \
--config_path models/bert_large_config.json \
--test_path datasets/smp2020-ewect/usual/dev.tsv \
--test_features_path datasets/smp2020-ewect/usual/test_features_1.npy --folds_num 5 --labels_num 6 --seq_length 160 \
--embedding word_pos_seg --encoder transformer --mask fully_visible
CUDA_VISIBLE_DEVICES=0 python3 inference/run_classifier_infer_cv.py --load_model_path models/ewect_usual_classifier_model_2.bin \
--vocab_path models/google_zh_vocab.txt \
--config_path models/bert_base_config.json \
--test_path datasets/smp2020-ewect/usual/dev.tsv \
--test_features_path datasets/smp2020-ewect/usual/test_features_2.npy --folds_num 5 --labels_num 6 --seq_length 100 \
--embedding word_pos_seg --encoder transformer --mask causal --pooling mean
CUDA_VISIBLE_DEVICES=0 python3 inference/run_classifier_infer_cv.py --load_model_path models/ewect_usual_classifier_model_3.bin \
--vocab_path models/google_zh_vocab.txt \
--config_path models/birnn_config.json \
--test_path datasets/smp2020-ewect/usual/dev.tsv \
--test_features_path datasets/smp2020-ewect/usual/test_features_3.npy --folds_num 5 --labels_num 6 \
--embedding word --encoder bilstm --pooling mean
CUDA_VISIBLE_DEVICES=0 python3 inference/run_classifier_infer_cv.py --load_model_path models/ewect_usual_classifier_model_4.bin \
--vocab_path models/google_zh_vocab.txt \
--config_path models/gatedcnn_9_config.json \
--test_path datasets/smp2020-ewect/usual/dev.tsv \
--test_features_path datasets/smp2020-ewect/usual/test_features_4.npy --folds_num 5 --labels_num 6 \
--embedding word --encoder gatedcnn --pooling max
python3 scripts/run_lgb.py --train_path datasets/smp2020-ewect/usual/train.tsv \
--test_path datasets/smp2020-ewect/usual/dev.tsv \
--train_features_path datasets/smp2020-ewect/usual/ \
--test_features_path datasets/smp2020-ewect/usual/ \
--models_num 5 --labels_num 6
用户可以在 run_lgb.py 中改变超参数。
这是使用stacking集成的简单展示,以上操作可以为我们带来非常有竞争力的结果(前5名)。当我们继续增加使用不同预处理,预训练和微调策略的模型时,将会获得进一步的提升。可以在比赛首页上找到更多详细信息。