diff --git a/CHANGELOG.md b/CHANGELOG.md index 0b703ccb..350397f0 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -3,8 +3,10 @@ ## [0.6.0] - 2023-12-16 ### Improvement - Now Python 3.11 is fully supported, thanks to @pail23 +- We now publish the optimization status on sensor.optim_status - Bumped setuptools, skforecast, numpy, scipy, pandas - A good bunch of documentation improvements thanks to @g1za +- Improved code coverage (a little bit ;-) ### Fix - Some fixes managing time zones, thanks to @pail23 - Bug fix on grid cost function equation, thanks to @michaelpiron diff --git a/src/emhass/command_line.py b/src/emhass/command_line.py index 5fdf58a7..9d549fe4 100644 --- a/src/emhass/command_line.py +++ b/src/emhass/command_line.py @@ -536,15 +536,15 @@ def publish_data(input_data_dict: dict, logger: logging.Logger, custom_cost_fun_id["friendly_name"], type_var = 'cost_fun', publish_prefix = publish_prefix) - # Publish the optimization status (A work in progress, will be available on future release) - ''' + # Publish the optimization status custom_cost_fun_id = params['passed_data']['custom_optim_status_id'] - input_data_dict['rh'].post_data(input_data_dict['opt'].optim_status, idx_closest, + input_data_dict['rh'].post_data(opt_res_latest['optim_status'], idx_closest, custom_cost_fun_id["entity_id"], custom_cost_fun_id["unit_of_measurement"], custom_cost_fun_id["friendly_name"], type_var = 'optim_status', - publish_prefix = publish_prefix)''' + publish_prefix = publish_prefix) + cols_published = cols_published+["optim_status"] # Publish unit_load_cost custom_unit_load_cost_id = params['passed_data']['custom_unit_load_cost_id'] input_data_dict['rh'].post_data(opt_res_latest['unit_load_cost'], idx_closest, diff --git a/src/emhass/forecast.py b/src/emhass/forecast.py index 23c690f8..83f88a76 100644 --- a/src/emhass/forecast.py +++ b/src/emhass/forecast.py @@ -316,6 +316,7 @@ def get_weather_forecast(self, method: Optional[str] = 'scrapper', data.set_index('ts', inplace=True) else: self.logger.error("Method %r is not valid", method) + data = None return data def cloud_cover_to_irradiance(self, cloud_cover: pd.Series, diff --git a/src/emhass/optimization.py b/src/emhass/optimization.py index 56eea557..219d68dc 100644 --- a/src/emhass/optimization.py +++ b/src/emhass/optimization.py @@ -461,6 +461,9 @@ def perform_optimization(self, data_opt: pd.DataFrame, P_PV: np.array, P_load: n unit_prod_price[i]*P_grid_neg[i].varValue) for i in set_I] else: self.logger.error("The cost function specified type is not valid") + + # Add the optimization status + opt_tp["optim_status"] = self.optim_status return opt_tp diff --git a/src/emhass/retrieve_hass.py b/src/emhass/retrieve_hass.py index ec598565..df3fefdd 100644 --- a/src/emhass/retrieve_hass.py +++ b/src/emhass/retrieve_hass.py @@ -282,6 +282,8 @@ def post_data(self, data_df: pd.DataFrame, idx: int, entity_id: str, state = np.round(data_df.sum()[0],2) elif type_var == 'unit_load_cost' or type_var == 'unit_prod_price': state = np.round(data_df.loc[data_df.index[idx]],4) + elif type_var == 'optim_status': + state = data_df.loc[data_df.index[idx]] else: state = np.round(data_df.loc[data_df.index[idx]],2) if type_var == 'power': @@ -305,6 +307,14 @@ def post_data(self, data_df: pd.DataFrame, idx: int, entity_id: str, elif type_var == 'mlforecaster': data = retrieve_hass.get_attr_data_dict(data_df, idx, entity_id, unit_of_measurement, friendly_name, "scheduled_forecast", state) + elif type_var == 'optim_status': + data = { + "state": state, + "attributes": { + "unit_of_measurement": unit_of_measurement, + "friendly_name": friendly_name + } + } else: data = { "state": "{:.2f}".format(state), diff --git a/src/emhass/utils.py b/src/emhass/utils.py index bc3d2bdf..cd2b5a43 100644 --- a/src/emhass/utils.py +++ b/src/emhass/utils.py @@ -136,6 +136,7 @@ def treat_runtimeparams(runtimeparams: str, params: str, retrieve_hass_conf: dic 'custom_batt_soc_forecast_id': {"entity_id": "sensor.soc_batt_forecast", "unit_of_measurement": "%", "friendly_name": "Battery SOC Forecast"}, 'custom_grid_forecast_id': {"entity_id": "sensor.p_grid_forecast", "unit_of_measurement": "W", "friendly_name": "Grid Power Forecast"}, 'custom_cost_fun_id': {"entity_id": "sensor.total_cost_fun_value", "unit_of_measurement": "", "friendly_name": "Total cost function value"}, + 'custom_optim_status_id': {"entity_id": "sensor.optim_status", "unit_of_measurement": "", "friendly_name": "EMHASS optimization status"}, 'custom_unit_load_cost_id': {"entity_id": "sensor.unit_load_cost", "unit_of_measurement": "€/kWh", "friendly_name": "Unit Load Cost"}, 'custom_unit_prod_price_id': {"entity_id": "sensor.unit_prod_price", "unit_of_measurement": "€/kWh", "friendly_name": "Unit Prod Price"}, 'custom_deferrable_forecast_id': custom_deferrable_forecast_id, @@ -339,6 +340,8 @@ def treat_runtimeparams(runtimeparams: str, params: str, retrieve_hass_conf: dic params['passed_data']['custom_grid_forecast_id'] = runtimeparams['custom_grid_forecast_id'] if 'custom_cost_fun_id' in runtimeparams.keys(): params['passed_data']['custom_cost_fun_id'] = runtimeparams['custom_cost_fun_id'] + if 'custom_optim_status_id' in runtimeparams.keys(): + params['passed_data']['custom_optim_status_id'] = runtimeparams['custom_optim_status_id'] if 'custom_unit_load_cost_id' in runtimeparams.keys(): params['passed_data']['custom_unit_load_cost_id'] = runtimeparams['custom_unit_load_cost_id'] if 'custom_unit_prod_price_id' in runtimeparams.keys(): diff --git a/tests/test_command_line_utils.py b/tests/test_command_line_utils.py index 9319ae43..881d4b0d 100644 --- a/tests/test_command_line_utils.py +++ b/tests/test_command_line_utils.py @@ -234,6 +234,20 @@ def test_naive_mpc_optim(self): action, logger, get_data_from_file=True) opt_res_last = publish_data(input_data_dict, logger, opt_res_latest=opt_res) self.assertTrue(len(opt_res_last)==1) + # Check if status is published + from datetime import datetime + now_precise = datetime.now(input_data_dict['retrieve_hass_conf']['time_zone']).replace(second=0, microsecond=0) + idx_closest = opt_res.index.get_indexer([now_precise], method='nearest')[0] + custom_cost_fun_id = {"entity_id": "sensor.optim_status", "unit_of_measurement": "", "friendly_name": "EMHASS optimization status"} + publish_prefix = "" + response, data = input_data_dict['rh'].post_data(opt_res['optim_status'], idx_closest, + custom_cost_fun_id["entity_id"], + custom_cost_fun_id["unit_of_measurement"], + custom_cost_fun_id["friendly_name"], + type_var = 'optim_status', + publish_prefix = publish_prefix) + self.assertTrue(hasattr(response, '__class__')) + self.assertTrue(data['attributes']['friendly_name'] == 'EMHASS optimization status') def test_forecast_model_fit_predict_tune(self): config_path = pathlib.Path(root+'/config_emhass.yaml') diff --git a/tests/test_forecast.py b/tests/test_forecast.py index 2b269902..643afa5a 100644 --- a/tests/test_forecast.py +++ b/tests/test_forecast.py @@ -101,6 +101,8 @@ def test_get_weather_forecast_csv(self): self.assertIsInstance(P_PV_forecast.index.dtype, pd.core.dtypes.dtypes.DatetimeTZDtype) self.assertEqual(P_PV_forecast.index.tz, self.fcst.time_zone) self.assertEqual(len(self.df_weather_csv), len(P_PV_forecast)) + df_weather_none = self.fcst.get_weather_forecast(method='none') + self.assertTrue(df_weather_none == None) def test_get_weather_forecast_mlforecaster(self): pass diff --git a/tests/test_optimization.py b/tests/test_optimization.py index 50ca4452..52df24a9 100644 --- a/tests/test_optimization.py +++ b/tests/test_optimization.py @@ -79,10 +79,6 @@ def test_perform_dayahead_forecast_optim(self): self.assertTrue('cost_fun_'+self.costfun in self.opt_res_dayahead.columns) self.assertTrue(self.opt_res_dayahead['P_deferrable0'].sum()*( self.retrieve_hass_conf['freq'].seconds/3600) == self.optim_conf['P_deferrable_nom'][0]*self.optim_conf['def_total_hours'][0]) - # Testing estimation of the current index - now_precise = datetime.now(self.input_data_dict['retrieve_hass_conf']['time_zone']).replace(second=0, microsecond=0) - idx_closest = self.opt_res_dayahead.index.get_indexer([now_precise], method='ffill')[0] - idx_closest = self.opt_res_dayahead.index.get_indexer([now_precise], method='nearest')[0] # Test the battery, dynamics and grid exchange contraints self.optim_conf.update({'set_use_battery': True}) self.optim_conf.update({'set_nocharge_from_grid': True}) @@ -103,6 +99,8 @@ def test_perform_dayahead_forecast_optim(self): table = opt_res[cost_cols].reset_index().sum(numeric_only=True).to_frame(name='Cost Totals').reset_index() self.assertTrue(table.columns[0]=='index') self.assertTrue(table.columns[1]=='Cost Totals') + # Check status + self.assertTrue('optim_status' in self.opt_res_dayahead.columns) def test_perform_dayahead_forecast_optim_costfun_selfconso(self): costfun = 'self-consumption' @@ -136,7 +134,6 @@ def test_perform_dayahead_forecast_optim_aux(self): self.optim_conf['treat_def_as_semi_cont'] = [False, False] self.optim_conf['set_total_pv_sell'] = True self.optim_conf['set_def_constant'] = [True, True] - # self.optim_conf['lp_solver'] = 'GLPK_CMD' self.opt = optimization(self.retrieve_hass_conf, self.optim_conf, self.plant_conf, self.fcst.var_load_cost, self.fcst.var_prod_price, self.costfun, root, logger) @@ -147,6 +144,20 @@ def test_perform_dayahead_forecast_optim_aux(self): self.assertIsInstance(self.opt_res_dayahead, type(pd.DataFrame())) self.assertIsInstance(self.opt_res_dayahead.index, pd.core.indexes.datetimes.DatetimeIndex) self.assertIsInstance(self.opt_res_dayahead.index.dtype, pd.core.dtypes.dtypes.DatetimeTZDtype) + import pulp as pl + solver_list = pl.listSolvers(onlyAvailable=True) + for solver in solver_list: + self.optim_conf['lp_solver'] = solver + self.opt = optimization(self.retrieve_hass_conf, self.optim_conf, self.plant_conf, + self.fcst.var_load_cost, self.fcst.var_prod_price, + self.costfun, root, logger) + self.df_input_data_dayahead = self.fcst.get_load_cost_forecast(self.df_input_data_dayahead) + self.df_input_data_dayahead = self.fcst.get_prod_price_forecast(self.df_input_data_dayahead) + self.opt_res_dayahead = self.opt.perform_dayahead_forecast_optim( + self.df_input_data_dayahead, self.P_PV_forecast, self.P_load_forecast) + self.assertIsInstance(self.opt_res_dayahead, type(pd.DataFrame())) + self.assertIsInstance(self.opt_res_dayahead.index, pd.core.indexes.datetimes.DatetimeIndex) + self.assertIsInstance(self.opt_res_dayahead.index.dtype, pd.core.dtypes.dtypes.DatetimeTZDtype) def test_perform_naive_mpc_optim(self): self.df_input_data_dayahead = self.fcst.get_load_cost_forecast(self.df_input_data_dayahead)