-
Notifications
You must be signed in to change notification settings - Fork 129
/
main.py
executable file
·321 lines (252 loc) · 10.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.optim.lr_scheduler as lr_scheduler
import torch.utils.data as data
import torchvision.transforms as transforms
from PIL import Image
import transforms as ext_transforms
from models.enet import ENet
from train import Train
from test import Test
from metric.iou import IoU
from args import get_arguments
from data.utils import enet_weighing, median_freq_balancing
import utils
# Get the arguments
args = get_arguments()
device = torch.device(args.device)
def load_dataset(dataset):
print("\nLoading dataset...\n")
print("Selected dataset:", args.dataset)
print("Dataset directory:", args.dataset_dir)
print("Save directory:", args.save_dir)
image_transform = transforms.Compose(
[transforms.Resize((args.height, args.width)),
transforms.ToTensor()])
label_transform = transforms.Compose([
transforms.Resize((args.height, args.width), Image.NEAREST),
ext_transforms.PILToLongTensor()
])
# Get selected dataset
# Load the training set as tensors
train_set = dataset(
args.dataset_dir,
transform=image_transform,
label_transform=label_transform)
train_loader = data.DataLoader(
train_set,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers)
# Load the validation set as tensors
val_set = dataset(
args.dataset_dir,
mode='val',
transform=image_transform,
label_transform=label_transform)
val_loader = data.DataLoader(
val_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers)
# Load the test set as tensors
test_set = dataset(
args.dataset_dir,
mode='test',
transform=image_transform,
label_transform=label_transform)
test_loader = data.DataLoader(
test_set,
batch_size=args.batch_size,
shuffle=False,
num_workers=args.workers)
# Get encoding between pixel valus in label images and RGB colors
class_encoding = train_set.color_encoding
# Remove the road_marking class from the CamVid dataset as it's merged
# with the road class
if args.dataset.lower() == 'camvid':
del class_encoding['road_marking']
# Get number of classes to predict
num_classes = len(class_encoding)
# Print information for debugging
print("Number of classes to predict:", num_classes)
print("Train dataset size:", len(train_set))
print("Validation dataset size:", len(val_set))
# Get a batch of samples to display
if args.mode.lower() == 'test':
images, labels = iter(test_loader).next()
else:
images, labels = iter(train_loader).next()
print("Image size:", images.size())
print("Label size:", labels.size())
print("Class-color encoding:", class_encoding)
# Show a batch of samples and labels
if args.imshow_batch:
print("Close the figure window to continue...")
label_to_rgb = transforms.Compose([
ext_transforms.LongTensorToRGBPIL(class_encoding),
transforms.ToTensor()
])
color_labels = utils.batch_transform(labels, label_to_rgb)
utils.imshow_batch(images, color_labels)
# Get class weights from the selected weighing technique
print("\nWeighing technique:", args.weighing)
print("Computing class weights...")
print("(this can take a while depending on the dataset size)")
class_weights = 0
if args.weighing.lower() == 'enet':
class_weights = enet_weighing(train_loader, num_classes)
elif args.weighing.lower() == 'mfb':
class_weights = median_freq_balancing(train_loader, num_classes)
else:
class_weights = None
if class_weights is not None:
class_weights = torch.from_numpy(class_weights).float().to(device)
# Set the weight of the unlabeled class to 0
if args.ignore_unlabeled:
ignore_index = list(class_encoding).index('unlabeled')
class_weights[ignore_index] = 0
print("Class weights:", class_weights)
return (train_loader, val_loader,
test_loader), class_weights, class_encoding
def train(train_loader, val_loader, class_weights, class_encoding):
print("\nTraining...\n")
num_classes = len(class_encoding)
# Intialize ENet
model = ENet(num_classes).to(device)
# Check if the network architecture is correct
print(model)
# We are going to use the CrossEntropyLoss loss function as it's most
# frequentely used in classification problems with multiple classes which
# fits the problem. This criterion combines LogSoftMax and NLLLoss.
criterion = nn.CrossEntropyLoss(weight=class_weights)
# ENet authors used Adam as the optimizer
optimizer = optim.Adam(
model.parameters(),
lr=args.learning_rate,
weight_decay=args.weight_decay)
# Learning rate decay scheduler
lr_updater = lr_scheduler.StepLR(optimizer, args.lr_decay_epochs,
args.lr_decay)
# Evaluation metric
if args.ignore_unlabeled:
ignore_index = list(class_encoding).index('unlabeled')
else:
ignore_index = None
metric = IoU(num_classes, ignore_index=ignore_index)
# Optionally resume from a checkpoint
if args.resume:
model, optimizer, start_epoch, best_miou = utils.load_checkpoint(
model, optimizer, args.save_dir, args.name)
print("Resuming from model: Start epoch = {0} "
"| Best mean IoU = {1:.4f}".format(start_epoch, best_miou))
else:
start_epoch = 0
best_miou = 0
# Start Training
print()
train = Train(model, train_loader, optimizer, criterion, metric, device)
val = Test(model, val_loader, criterion, metric, device)
for epoch in range(start_epoch, args.epochs):
print(">>>> [Epoch: {0:d}] Training".format(epoch))
epoch_loss, (iou, miou) = train.run_epoch(args.print_step)
lr_updater.step()
print(">>>> [Epoch: {0:d}] Avg. loss: {1:.4f} | Mean IoU: {2:.4f}".
format(epoch, epoch_loss, miou))
if (epoch + 1) % 10 == 0 or epoch + 1 == args.epochs:
print(">>>> [Epoch: {0:d}] Validation".format(epoch))
loss, (iou, miou) = val.run_epoch(args.print_step)
print(">>>> [Epoch: {0:d}] Avg. loss: {1:.4f} | Mean IoU: {2:.4f}".
format(epoch, loss, miou))
# Print per class IoU on last epoch or if best iou
if epoch + 1 == args.epochs or miou > best_miou:
for key, class_iou in zip(class_encoding.keys(), iou):
print("{0}: {1:.4f}".format(key, class_iou))
# Save the model if it's the best thus far
if miou > best_miou:
print("\nBest model thus far. Saving...\n")
best_miou = miou
utils.save_checkpoint(model, optimizer, epoch + 1, best_miou,
args)
return model
def test(model, test_loader, class_weights, class_encoding):
print("\nTesting...\n")
num_classes = len(class_encoding)
# We are going to use the CrossEntropyLoss loss function as it's most
# frequentely used in classification problems with multiple classes which
# fits the problem. This criterion combines LogSoftMax and NLLLoss.
criterion = nn.CrossEntropyLoss(weight=class_weights)
# Evaluation metric
if args.ignore_unlabeled:
ignore_index = list(class_encoding).index('unlabeled')
else:
ignore_index = None
metric = IoU(num_classes, ignore_index=ignore_index)
# Test the trained model on the test set
test = Test(model, test_loader, criterion, metric, device)
print(">>>> Running test dataset")
loss, (iou, miou) = test.run_epoch(args.print_step)
class_iou = dict(zip(class_encoding.keys(), iou))
print(">>>> Avg. loss: {0:.4f} | Mean IoU: {1:.4f}".format(loss, miou))
# Print per class IoU
for key, class_iou in zip(class_encoding.keys(), iou):
print("{0}: {1:.4f}".format(key, class_iou))
# Show a batch of samples and labels
if args.imshow_batch:
print("A batch of predictions from the test set...")
images, _ = iter(test_loader).next()
predict(model, images, class_encoding)
def predict(model, images, class_encoding):
images = images.to(device)
# Make predictions!
model.eval()
with torch.no_grad():
predictions = model(images)
# Predictions is one-hot encoded with "num_classes" channels.
# Convert it to a single int using the indices where the maximum (1) occurs
_, predictions = torch.max(predictions.data, 1)
label_to_rgb = transforms.Compose([
ext_transforms.LongTensorToRGBPIL(class_encoding),
transforms.ToTensor()
])
color_predictions = utils.batch_transform(predictions.cpu(), label_to_rgb)
utils.imshow_batch(images.data.cpu(), color_predictions)
# Run only if this module is being run directly
if __name__ == '__main__':
# Fail fast if the dataset directory doesn't exist
assert os.path.isdir(
args.dataset_dir), "The directory \"{0}\" doesn't exist.".format(
args.dataset_dir)
# Fail fast if the saving directory doesn't exist
assert os.path.isdir(
args.save_dir), "The directory \"{0}\" doesn't exist.".format(
args.save_dir)
# Import the requested dataset
if args.dataset.lower() == 'camvid':
from data import CamVid as dataset
elif args.dataset.lower() == 'cityscapes':
from data import Cityscapes as dataset
else:
# Should never happen...but just in case it does
raise RuntimeError("\"{0}\" is not a supported dataset.".format(
args.dataset))
loaders, w_class, class_encoding = load_dataset(dataset)
train_loader, val_loader, test_loader = loaders
if args.mode.lower() in {'train', 'full'}:
model = train(train_loader, val_loader, w_class, class_encoding)
if args.mode.lower() in {'test', 'full'}:
if args.mode.lower() == 'test':
# Intialize a new ENet model
num_classes = len(class_encoding)
model = ENet(num_classes).to(device)
# Initialize a optimizer just so we can retrieve the model from the
# checkpoint
optimizer = optim.Adam(model.parameters())
# Load the previoulsy saved model state to the ENet model
model = utils.load_checkpoint(model, optimizer, args.save_dir,
args.name)[0]
if args.mode.lower() == 'test':
print(model)
test(model, test_loader, w_class, class_encoding)