-
Notifications
You must be signed in to change notification settings - Fork 0
/
theanorc_gpu
34 lines (28 loc) · 1.32 KB
/
theanorc_gpu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
[global]
floatX = float32
device = gpu
openmp = True
openmp_elem_wise = 200000
[dnn]
enabled = True
include_path = /reg/neh/home/davidsch/cudnn_v4/lib/cuda/include
library_path = /reg/neh/home/davidsch/cudnn_v4/lib/cuda/lib64
[dnn.conv]
algo_fwd = small
#(('small', 'none', 'large', 'fft', 'fft_tiling', 'guess_once', 'guess_on_shape_change', 'time_once', 'time_on_shape_change'))
# Doc: Default implementation to use for CuDNN forward convolution.
# Value: small
algo_bwd_data = none
#(('none', 'deterministic', 'fft', 'fft_tiling', 'guess_once', 'guess_on_shape_change', 'time_once', 'time_on_shape_change'))
# Doc: Default implementation to use for CuDNN backward convolution to get the gradients of the convolution with regard to the inputs.
# Value: none
algo_bwd_filter = none
#(('none', 'deterministic', 'fft', 'small', 'guess_once', 'guess_on_shape_change', 'time_once', 'time_on_shape_change'))
# Doc: Default implementation to use for CuDNN backward convolution to get the gradients of the convolution with regard to the filters.
# Value: none
precision = as_input
#(('as_input', 'float16', 'float32', 'float64'))
# Doc: Default data precision to use for the computation in CuDNN convolutions (defaults to the same dtype as the inputs of the convolutions).
# Value: as_input
[nvcc]
fastmath = False