-
Notifications
You must be signed in to change notification settings - Fork 110
/
tf_utils.py
129 lines (122 loc) · 4.06 KB
/
tf_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# %% Borrowed utils from here: https://github.com/pkmital/tensorflow_tutorials/
import tensorflow as tf
import numpy as np
def conv2d(x, n_filters,
k_h=5, k_w=5,
stride_h=2, stride_w=2,
stddev=0.02,
activation=lambda x: x,
bias=True,
padding='SAME',
name="Conv2D"):
"""2D Convolution with options for kernel size, stride, and init deviation.
Parameters
----------
x : Tensor
Input tensor to convolve.
n_filters : int
Number of filters to apply.
k_h : int, optional
Kernel height.
k_w : int, optional
Kernel width.
stride_h : int, optional
Stride in rows.
stride_w : int, optional
Stride in cols.
stddev : float, optional
Initialization's standard deviation.
activation : arguments, optional
Function which applies a nonlinearity
padding : str, optional
'SAME' or 'VALID'
name : str, optional
Variable scope to use.
Returns
-------
x : Tensor
Convolved input.
"""
with tf.variable_scope(name):
w = tf.get_variable(
'w', [k_h, k_w, x.get_shape()[-1], n_filters],
initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv2d(
x, w, strides=[1, stride_h, stride_w, 1], padding=padding)
if bias:
b = tf.get_variable(
'b', [n_filters],
initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = conv + b
return conv
def linear(x, n_units, scope=None, stddev=0.02,
activation=lambda x: x):
"""Fully-connected network.
Parameters
----------
x : Tensor
Input tensor to the network.
n_units : int
Number of units to connect to.
scope : str, optional
Variable scope to use.
stddev : float, optional
Initialization's standard deviation.
activation : arguments, optional
Function which applies a nonlinearity
Returns
-------
x : Tensor
Fully-connected output.
"""
shape = x.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], n_units], tf.float32,
tf.random_normal_initializer(stddev=stddev))
return activation(tf.matmul(x, matrix))
# %%
def weight_variable(shape):
'''Helper function to create a weight variable initialized with
a normal distribution
Parameters
----------
shape : list
Size of weight variable
'''
#initial = tf.random_normal(shape, mean=0.0, stddev=0.01)
initial = tf.zeros(shape)
return tf.Variable(initial)
# %%
def bias_variable(shape):
'''Helper function to create a bias variable initialized with
a constant value.
Parameters
----------
shape : list
Size of weight variable
'''
initial = tf.random_normal(shape, mean=0.0, stddev=0.01)
return tf.Variable(initial)
# %%
def dense_to_one_hot(labels, n_classes=2):
"""Convert class labels from scalars to one-hot vectors."""
labels = np.array(labels)
n_labels = labels.shape[0]
index_offset = np.arange(n_labels) * n_classes
labels_one_hot = np.zeros((n_labels, n_classes), dtype=np.float32)
labels_one_hot.flat[index_offset + labels.ravel()] = 1
return labels_one_hot