-
Notifications
You must be signed in to change notification settings - Fork 244
/
IntroToTextAnalytics_Part6.R
397 lines (263 loc) · 11.4 KB
/
IntroToTextAnalytics_Part6.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#
# Copyright 2017 Data Science Dojo
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# This R source code file corresponds to video 6 of the Data Science
# Dojo YouTube series "Introduction to Text Analytics with R" located
# at the following URL:
# https://www.youtube.com/watch?v=neiW5Ugsob8
#
# Install all required packages.
install.packages(c("ggplot2", "e1071", "caret", "quanteda",
"irlba", "randomForest"))
# Load up the .CSV data and explore in RStudio.
spam.raw <- read.csv("spam.csv", stringsAsFactors = FALSE, fileEncoding = "UTF-16")
View(spam.raw)
# Clean up the data frame and view our handiwork.
spam.raw <- spam.raw[, 1:2]
names(spam.raw) <- c("Label", "Text")
View(spam.raw)
# Check data to see if there are missing values.
length(which(!complete.cases(spam.raw)))
# Convert our class label into a factor.
spam.raw$Label <- as.factor(spam.raw$Label)
# The first step, as always, is to explore the data.
# First, let's take a look at distibution of the class labels (i.e., ham vs. spam).
prop.table(table(spam.raw$Label))
# Next up, let's get a feel for the distribution of text lengths of the SMS
# messages by adding a new feature for the length of each message.
spam.raw$TextLength <- nchar(spam.raw$Text)
summary(spam.raw$TextLength)
# Visualize distribution with ggplot2, adding segmentation for ham/spam.
library(ggplot2)
ggplot(spam.raw, aes(x = TextLength, fill = Label)) +
theme_bw() +
geom_histogram(binwidth = 5) +
labs(y = "Text Count", x = "Length of Text",
title = "Distribution of Text Lengths with Class Labels")
# At a minimum we need to split our data into a training set and a
# test set. In a true project we would want to use a three-way split
# of training, validation, and test.
#
# As we know that our data has non-trivial class imbalance, we'll
# use the mighty caret package to create a randomg train/test split
# that ensures the correct ham/spam class label proportions (i.e.,
# we'll use caret for a random stratified split).
library(caret)
help(package = "caret")
# Use caret to create a 70%/30% stratified split. Set the random
# seed for reproducibility.
set.seed(32984)
indexes <- createDataPartition(spam.raw$Label, times = 1,
p = 0.7, list = FALSE)
train <- spam.raw[indexes,]
test <- spam.raw[-indexes,]
# Verify proportions.
prop.table(table(train$Label))
prop.table(table(test$Label))
# Text analytics requires a lot of data exploration, data pre-processing
# and data wrangling. Let's explore some examples.
# HTML-escaped ampersand character.
train$Text[21]
# HTML-escaped '<' and '>' characters. Also note that Mallika Sherawat
# is an actual person, but we will ignore the implications of this for
# this introductory tutorial.
train$Text[38]
# A URL.
train$Text[357]
# There are many packages in the R ecosystem for performing text
# analytics. One of the newer packages in quanteda. The quanteda
# package has many useful functions for quickly and easily working
# with text data.
library(quanteda)
help(package = "quanteda")
# Tokenize SMS text messages.
train.tokens <- tokens(train$Text, what = "word",
remove_numbers = TRUE, remove_punct = TRUE,
remove_symbols = TRUE, remove_hyphens = TRUE)
# Take a look at a specific SMS message and see how it transforms.
train.tokens[[357]]
# Lower case the tokens.
train.tokens <- tokens_tolower(train.tokens)
train.tokens[[357]]
# Use quanteda's built-in stopword list for English.
# NOTE - You should always inspect stopword lists for applicability to
# your problem/domain.
train.tokens <- tokens_select(train.tokens, stopwords(),
selection = "remove")
train.tokens[[357]]
# Perform stemming on the tokens.
train.tokens <- tokens_wordstem(train.tokens, language = "english")
train.tokens[[357]]
# Create our first bag-of-words model.
train.tokens.dfm <- dfm(train.tokens, tolower = FALSE)
# Transform to a matrix and inspect.
train.tokens.matrix <- as.matrix(train.tokens.dfm)
View(train.tokens.matrix[1:20, 1:100])
dim(train.tokens.matrix)
# Investigate the effects of stemming.
colnames(train.tokens.matrix)[1:50]
# Per best practices, we will leverage cross validation (CV) as
# the basis of our modeling process. Using CV we can create
# estimates of how well our model will do in Production on new,
# unseen data. CV is powerful, but the downside is that it
# requires more processing and therefore more time.
#
# If you are not familiar with CV, consult the following
# Wikipedia article:
#
# https://en.wikipedia.org/wiki/Cross-validation_(statistics)
#
# Setup a the feature data frame with labels.
train.tokens.df <- cbind(Label = train$Label, data.frame(train.tokens.dfm))
# Often, tokenization requires some additional pre-processing
names(train.tokens.df)[c(146, 148, 235, 238)]
# Cleanup column names.
names(train.tokens.df) <- make.names(names(train.tokens.df))
# Use caret to create stratified folds for 10-fold cross validation repeated
# 3 times (i.e., create 30 random stratified samples)
set.seed(48743)
cv.folds <- createMultiFolds(train$Label, k = 10, times = 3)
cv.cntrl <- trainControl(method = "repeatedcv", number = 10,
repeats = 3, index = cv.folds)
# Our data frame is non-trivial in size. As such, CV runs will take
# quite a long time to run. To cut down on total execution time, use
# the doSNOW package to allow for multi-core training in parallel.
#
# WARNING - The following code is configured to run on a workstation-
# or server-class machine (i.e., 12 logical cores). Alter
# code to suit your HW environment.
#
#install.packages("doSNOW")
library(doSNOW)
# Time the code execution
start.time <- Sys.time()
# Create a cluster to work on 10 logical cores.
cl <- makeCluster(10, type = "SOCK")
registerDoSNOW(cl)
# As our data is non-trivial in size at this point, use a single decision
# tree alogrithm as our first model. We will graduate to using more
# powerful algorithms later when we perform feature extraction to shrink
# the size of our data.
rpart.cv.1 <- train(Label ~ ., data = train.tokens.df, method = "rpart",
trControl = cv.cntrl, tuneLength = 7)
# Processing is done, stop cluster.
stopCluster(cl)
# Total time of execution on workstation was approximately 4 minutes.
total.time <- Sys.time() - start.time
total.time
# Check out our results.
rpart.cv.1
# The use of Term Frequency-Inverse Document Frequency (TF-IDF) is a
# powerful technique for enhancing the information/signal contained
# within our document-frequency matrix. Specifically, the mathematics
# behind TF-IDF accomplish the following goals:
# 1 - The TF calculation accounts for the fact that longer
# documents will have higher individual term counts. Applying
# TF normalizes all documents in the corpus to be length
# independent.
# 2 - The IDF calculation accounts for the frequency of term
# appearance in all documents in the corpus. The intuition
# being that a term that appears in every document has no
# predictive power.
# 3 - The multiplication of TF by IDF for each cell in the matrix
# allows for weighting of #1 and #2 for each cell in the matrix.
# Our function for calculating relative term frequency (TF)
term.frequency <- function(row) {
row / sum(row)
}
# Our function for calculating inverse document frequency (IDF)
inverse.doc.freq <- function(col) {
corpus.size <- length(col)
doc.count <- length(which(col > 0))
log10(corpus.size / doc.count)
}
# Our function for calculating TF-IDF.
tf.idf <- function(x, idf) {
x * idf
}
# First step, normalize all documents via TF.
train.tokens.df <- apply(train.tokens.matrix, 1, term.frequency)
dim(train.tokens.df)
View(train.tokens.df[1:20, 1:100])
# Second step, calculate the IDF vector that we will use - both
# for training data and for test data!
train.tokens.idf <- apply(train.tokens.matrix, 2, inverse.doc.freq)
str(train.tokens.idf)
# Lastly, calculate TF-IDF for our training corpus.
train.tokens.tfidf <- apply(train.tokens.df, 2, tf.idf, idf = train.tokens.idf)
dim(train.tokens.tfidf)
View(train.tokens.tfidf[1:25, 1:25])
# Transpose the matrix
train.tokens.tfidf <- t(train.tokens.tfidf)
dim(train.tokens.tfidf)
View(train.tokens.tfidf[1:25, 1:25])
# Check for incopmlete cases.
incomplete.cases <- which(!complete.cases(train.tokens.tfidf))
train$Text[incomplete.cases]
# Fix incomplete cases
train.tokens.tfidf[incomplete.cases,] <- rep(0.0, ncol(train.tokens.tfidf))
dim(train.tokens.tfidf)
sum(which(!complete.cases(train.tokens.tfidf)))
# Make a clean data frame using the same process as before.
train.tokens.tfidf.df <- cbind(Label = train$Label, data.frame(train.tokens.tfidf))
names(train.tokens.tfidf.df) <- make.names(names(train.tokens.tfidf.df))
# Time the code execution
start.time <- Sys.time()
# Create a cluster to work on 10 logical cores.
cl <- makeCluster(3, type = "SOCK")
registerDoSNOW(cl)
# As our data is non-trivial in size at this point, use a single decision
# tree alogrithm as our first model. We will graduate to using more
# powerful algorithms later when we perform feature extraction to shrink
# the size of our data.
rpart.cv.2 <- train(Label ~ ., data = train.tokens.tfidf.df, method = "rpart",
trControl = cv.cntrl, tuneLength = 7)
# Processing is done, stop cluster.
stopCluster(cl)
# Total time of execution on workstation was
total.time <- Sys.time() - start.time
total.time
# Check out our results.
rpart.cv.2
# N-grams allow us to augment our document-term frequency matrices with
# word ordering. This often leads to increased performance (e.g., accuracy)
# for machine learning models trained with more than just unigrams (i.e.,
# single terms). Let's add bigrams to our training data and the TF-IDF
# transform the expanded featre matrix to see if accuracy improves.
# Add bigrams to our feature matrix.
train.tokens <- tokens_ngrams(train.tokens, n = 1:2)
train.tokens[[357]]
# Transform to dfm and then a matrix.
train.tokens.dfm <- dfm(train.tokens, tolower = FALSE)
train.tokens.matrix <- as.matrix(train.tokens.dfm)
train.tokens.dfm
# Normalize all documents via TF.
train.tokens.df <- apply(train.tokens.matrix, 1, term.frequency)
# Calculate the IDF vector that we will use for training and test data!
train.tokens.idf <- apply(train.tokens.matrix, 2, inverse.doc.freq)
# Calculate TF-IDF for our training corpus
train.tokens.tfidf <- apply(train.tokens.df, 2, tf.idf,
idf = train.tokens.idf)
# Transpose the matrix
train.tokens.tfidf <- t(train.tokens.tfidf)
# Fix incomplete cases
incomplete.cases <- which(!complete.cases(train.tokens.tfidf))
train.tokens.tfidf[incomplete.cases,] <- rep(0.0, ncol(train.tokens.tfidf))
# Make a clean data frame.
train.tokens.tfidf.df <- cbind(Label = train$Label, data.frame(train.tokens.tfidf))
names(train.tokens.tfidf.df) <- make.names(names(train.tokens.tfidf.df))
# Clean up unused objects in memory.
gc()